Mathematics
SMA
Terselesaikan

一対一です。2枚目の+1がどこから生じたのか分かりません。お願いしますm(__)m

Ei 人10 格子点の数え上げ | 2|y|<4 の表す領城を の とする. 領域内の格子点 ((, 9) の両座標とも束数 となる点) はビーゴ個ぁる (2 る ) ヵを自然数として, 不等式 |z|+2|g|52ヵ の表す領城をとする. 領域内の格子点の絶 は し 側である. (曲大・スポーツ 格子点の利用 ) 座標平面上の点で, 座標, y護標ともに整数値を のような。 条件を満たす 2 つの丈数の組を数え上げる問題では, 条件を まれる格子点を数え上げればよい・ 問題が視覚化されて考えやすくなる・ -度に 2 つの変数を動かす 条件を満たす整数の組(z, 9) を数え上げる問題では, おき), そのと きに条件を満たす 9の個数を まず 1つの変数, 例えばを固定し (テールと 数をえ上げる(ん で表す). zy 平面 上の格子点を数え 上ドげる間題におきかえると, これは, 条件を満たす領 て考えていることに相当する. なお, 例題のように, +ではなく+の方を固定し ーんで切っ は こともある. 叙域の形を見て判断するとよい・ 問題でも, まず 1 文字(例えば 上げたが旧い 1 2 個になって, 条件を満たす整数の組 (z, る) を数え上びる という方針がよい. の導 5 4 Ne とる点を格子点という 濱習是 座標平面上に図示し, これに合 のではなく,
人SN ここNONE て, 表え上けた方がま申いこともぁ 和角が3仙になって 林作と生の押上 る) を周定して考えるといぅ 時解 答置 / (2 のは図のようになる. 9ーキ2 上に各 1 個、ッニュ1 に各5 個. ター0 上に 9 個. よって, 全部で, (1+5) 2+9=21 個 ( 2 ) 刀は右図のようになる、 0 の部分の個数を , =0 の部分の個数 を Az とすると, 対称性より求める個数は, 2が十 z (個) である、 ターん(を=0, 1, …。 ヵ) 上の格子点の個数は、 |+2をミ2ヶ 。 … |zlS2み一2ん カー2たさきzき2一2ん より,( 2K2k三 ぁ)+デ4(ヵーん) 1 (個) …① あるので, がGEOE2UECEOAM )キの+…+1T0) キーかす(ーDキルー27ー で」 4十1 / 2(272ーヵ)十4が十1ニー4"十2a十1 (個)
数列 図形

Answers

✨ Jawaban Terbaik ✨

例えば、1から10まで数えて何個の数字があるかを考えたとします。当然10個の数字があるんですけど、これを本当に求めるとすると、
(10)-(1)+1=10
となります。この括弧でくくった所を-(2n-2k),(2n-2k)に置き換えた結果が丸いところに当たります。何か不明な点があれば、この投稿にコメントを下さい。お願いします。

S

ありがとうございます!分かりました!

Post A Comment
Apa kebingunganmu sudah terpecahkan?

Pengguna yang melihat pertanyaan ini
juga melihat pertanyaan-pertanyaan ini 😉