Mathematics
SMA
Terselesaikan

数列についてです。
赤色で印をつけている部分が、なぜそうなるのかが分かりません。
上の四角で囲ってある部分はどう考えたらB0がでてくるのか、下の部分はなぜa0×a1をして、それが1000×1000になるのかがわかりません。
よろしくお願い致します。

例題1 例えば, A3版の用紙の長辺を半分に折ると A4版になる。 A3版の2辺の長さの比は,A4版のそれと等しく,相似である。 ant A5 an+2 //an 一般的に,n≧0において, An版の用紙の長辺を半分に折ると An+1 版になる。 An版の2辺の長さの比は, An+1版のそれと等しく,相似である。 A0版の用紙の面積は1mである。 このとき,An版の用紙の長辺の長さをa, mm, 短辺の長さを On+1 mm と定義できる。 (1) anの一般項を求めなさい。 解答 An版の用紙の長辺を半分に折ると An+1版になるので an+2 an 2 ... ① An版の2辺の長さの比は, An+1版のそれと等しいので, 2 an:an+1 =an+1:an+2 ・② an antz = antl an+2. = anti A4+1° an a² 2 = an 2 ①②より 2 an+1 - on = b とおくと bn+1 bn 2 初bi比の等比数列 等比数列の公式より bn=bil/n-l bn = bo (2) よって an = ao n n bn=/bo(1/2)n-1 An²=Aò²(±)″ An= Ao√(±)” = A0 (±) ± an²=ao(土) = do n (1) () an=ao(/) A0版の用紙の大きさが1mなので, aa1 = 1000 × 1000=106(mx(m Mmm aoa1= aoao =10600?1/2=106 a² = 106√2 a = 103%2 以上より an = 1000V2 (n≧0)

Answers

✨ Jawaban Terbaik ✨

aはa0, a1, a2,……とa0から始まっているので、
bも、それに対応して、
最初のb0を基準にして考えるのが一般的です

漸化式を解くのに初項a0が必要です
そのために、与えられた条件からa0の式を立てています

さくら

回答して下さりありがとうございます!!!
詳しく説明も書いて下さり、とても助かりました🙇‍♂️

Post A Comment
Apa kebingunganmu sudah terpecahkan?

Pengguna yang melihat pertanyaan ini
juga melihat pertanyaan-pertanyaan ini 😉