Mathematics
SMA
Terselesaikan

解説お願いします。

(2)の問題で、何が分からないかすら分からないくらい問題の意味がよく分からないです。
問題の意味と考え方を教えていただきたいです。

よろしくお願いします。

例題 342 標本平均の平均・ 標準偏差 (1)ある高校の男子の体重の平均は62kg,標準偏差は9kgである。この 高校の男子100人を無作為に選ぶとき,この100人の体重の平均 X の平 均と標準偏差を求めよ。 (2)ある母集団から復元抽出された大きさ3の標本の変量が X1,X2,X であるとき 標本平均 X の平均と標準偏差 を求めよ。 ただし, X, の確率分布は,右の表 X -1 P 0 212 112 14 12 16 思考プロセス E(X)=m (X) 6 √n この通りとする。 公式の利用 母集団」 母平均m O 母標準偏差 0 ※水 無作為 抽出 [標本平均の平均E(X) 【標本平均の標準偏差 (X) 標本 ... → 標本平均 X = Xi+X2+... +Xn n 個 Action» 標本平均の平均は、母平均と同じであることを用いよ 解 (1) 母平均m=62, 母標準偏差 = 9, 標本の大きさ n = 100 より 合 9 E(X) = m = 62, o(X) = 9 100 10 (2) 母平均m,母標準偏差は m=E(X1)=(-1)・ 1 +0. +1・ +2・ 1 6 = 4 2 12 E(X12)=(-1)2. 1 6 4 +02. +12 +22. 12 1 1 2 = 1 VaR.Ch 610 よって o=o(X)=√E(X2)-{E(X)} E(X)= =m= = 1 2 6(X) = 0 √√3 1 = 1. 2 12 標本の大きさ, 母標準 偏差のとき, 標本平均 X の標準偏差は o(X)= = n = √3 == 標本の変量を X1, X2, ..., Xm とすると E(Xi) = E(X2)= =... =E(Xm)=m =... 2 o(X)=6 (X2)= =o(X)=0 V(X)=E(X2){E(X) √√3 2 √3 2 標本の大きさ n=3 342 (1) ある高校の女子のソフトボール投げの平均は31.5m,標準偏差は7.2mで ある。この高校の女子 144 人を無作為に選ぶとき、この144 人のソフトボー ル投げの平均 X の平均と標準偏差を求めよ。 (2)ある母集団から復元抽出された大きさ 4の標本の変量がX1,X2, Xs, Xi であるとき,標本平均 X の平均と標準偏差を求めよ。 ただし,X, の確率分布は,右の表の通りとする。 X1 1 2 2 P 10 510 3 310

Answers

✨ Jawaban Terbaik ✨

確かに不親切な(わかりにくい)問題文ですね
少し読み替えると以下の様になります。
ーーーーー
ある母集団から復元抽出される標本Xの確率分布は表の通りとする。
この母集団から復元抽出された大きさ3の標本平均(X₁+X₂+X₃)/3をX‾としたとき、
X‾の平均と標準偏差を求めなさい。

この問題は、
E(X)=E(X₁)=E(X₂)=E(X₃)、V(X)=V(X₁)=V(X₂)=V(X₃)を意味しています。
E(X₁)、V(X₁)を求めれば、E(X₂)、E(X₃)、V(X₂)、V(X₃)も同じです。
ーーーーー
E(X)=・・・=1/2(解説の通り)
V(X)=・・・=3/4(分散…解説のσ²のこと)

E(X‾)=E((X₁+X₂+X₃)/3)
 =E(X₁+X₂+X₃)/3
 ={E(X₁)+E(X₂)+E(X₃)}/3
 ={E(X)+E(X)+E(X)}/3
 =3E(X)/3
 =E(X)=1/2
V(X‾)=V((X₁+X₂+X₃)/3)
 =V(X₁+X₂+X₃)/9
 ={V(X₁)+V(X₂)+V(X₃)}/9
 ={V(X)+V(X)+V(X)}/9
 =3V(X)/9
 =V(X)/3=1/4
σ(X‾)=√V(X‾)=√(1/4)=1/2

淳華

理解できました。
ありがとうございます!

Post A Comment
Apa kebingunganmu sudah terpecahkan?