Mathematics
SMA
Terselesaikan

オカキのところなんですが、なぜAC垂直BCではだめなんですか?

〔2〕 △ABCにおいて, BC = 7, sin∠ABC= 状について考えよう。 オカ オカ (1) AC の長さの最小値は であり, AC= のとき, △ABCは =223 とする。このとき,△ABCの形 ACQUA 〔2〕 (1) ACの長さが最小となるのは, Cから ABに下ろした垂線が AC となるときである。 このとき AC=BCsin∠ABC BCの長さを固定し, 図を 考えるとわかりやすい。 ¥5 キ =7.3*21 45 A であり, △ABCは ∠BAC=90° の直角三角 ク 形ただ一通りである。(①) (2) 正弦定理により 35 2.- AC 8 sin∠ABC B- L ケコ ケコ 35 よって (2) ABCの外接円の半径が のとき,AC= である。 AC= サイ AC=-4 21 サ 右の図のように, AC= 2 となる点は2つ のとき, △ABCは シ (3) AC=7 のとき, △ABCはただ一通りの鈍角三角形である。 ケコ <AC <7, 7 <AC のとき, △ABCは ス △A'BCは ∠BA'C=90° の直角三角形である から, ABC は BAC が鈍角の鈍角三角形 である。 存在する。 これらを A,A2とし,さらにAC= 2/3 のと きのAをA' とする。 もう一度正弦定理を用い BC AC sin BAC sin∠AF より in BAC=13 0° <<BAC<180° で 点Aは2通りある。 4 サ また,A2C2+BC2=441 16 ク シ ス の解答群 (同じものを繰り返し選んでもよい。) の直径であるから +49=- ∠ACB=90° より A2BはA2BCの外接円 BC: AC=72=4 16 sin∠ABC123から ⑩ただ一通りの鋭角三角形である ゆえに,AC=2のとき, △ABCは二通りあり、それらは直角三角形と鈍 角三角形である。 (4) △ABCが直角三角形 ① ただ一通りの直角三角形である (2) ただ一通りの鈍角三角形である (3) AC=7 のとき, ABCはただ一通りの鈍角三角形である。 調べてもよい。 <CA=CB, ∠ACB 辺三角形。 21 <AC<7 のとき, △ABCは ∠BAC または ∠ACB が鈍角の鈍角三角 ③二通りあり、 それらは鋭角三角形と直角三角形である ④二通りあり、 それらは直角三角形と鈍角三角形である ⑤二通りあり、それらは鈍角三角形と鋭角三角形である ⑥二通りあり、 それらはどちらも鋭角三角形である ⑦二通りあり、 それらはどちらも直角三角形である ⑧二通りあり,それらはどちらも鈍角三角形である (数学Ⅰ 数学A第1問は28ページに続く。) 4 形である。 また, AC>7 のとき, ABCは∠ABCまた は ∠ACB が鈍角の鈍角三角形である。 よって、 <AC <7,7<AC のとき, ABC は二通りあり、それらはどちらも鈍角三角形で ある。 (8) A 問題文の読みとり 〔2〕 △ABCにおいて, BC 7, sin∠ABC= =123 とする。このとき, ABCの形 状について考えよう。 〔2〕はこの える。 BC=7 とわ ら, sin∠A る直線 BA るととらえ ■基準

Answers

✨ Jawaban Terbaik ✨

図に描きました
想像力です

コダック

ありがとうございます!!

Post A Comment
Apa kebingunganmu sudah terpecahkan?

Pengguna yang melihat pertanyaan ini
juga melihat pertanyaan-pertanyaan ini 😉