Mathematics
SMA
Terselesaikan

(2)の三角関数不等式の問題を教えていただきたいです。
黒線で引いている、なぜ常にこのようなものが必要なのでしょうか?
すなわちのところで不等号がなぜ逆になっているか知りたいです。
よろしくお願いします。

基本 137 138 なるから、 ます。 π 3 基本 例題 140 三角方程式・不等式の解法 (2) ・ 002のとき,次の方程式、不等式を解け (1) 2cos20+sin0-1=0 sin20+cos20=1 00000 (2)2sin20+5cos0-4>0Qd 基本 137,138 重要 143 (1) cos20=1-sin20, (2) sin'0=1-cos' を代入。 指針▷ 複数の種類の三角関数を含む式は,まず1種類の三角関数で表す。 ② (1) は sin 0 だけ (2) は cos0 だけの式になる。 このとき,-1≦sin0≦1, -1≦cos01 に要注意! ③ ②で導いた式から (1) sin0 の値 (2): cose の値の範囲を求め、 それに対応する0の 値,0の値の範囲を求める。 sincos の変身自在に sin'0+cos'0=1 CHART 解答 (1) 方程式から 整理すると ゆえに よって 自 2 (1-sin20)+sin0-1=00 cos20=1-sin20 2sin20-sin0-1=0 (sin0-1)(2sin0+1)=0 200-(0203-1)=1+0800) yiel +1 1 sin0=1, 7 2 6 2 -1 1x 00 <2であるから 221 4章 23 三角関数の応用 π sin0=1より 0= また、 1 より sin0=-- 0= 2 したがって,解は 0= 276 2 1-2 -1 16 11 IC ・π, 6 16 11 π πT 7 11 π, π 6 (2) 不等式から 2 (1-cos20)+5cos 0-4 > 0 sin20=1-cos' 整理すると 2cos20-5cos0+2<0 よって (cos 0-2)(2 cos 0-1)<0 YA 1 0≦0<2πのとき,-1≦cos≦1であるから,常に COS 0-2 < 0 である。 5 3 ON したがって 2 cos0-1>0 すなわち COSA> 2 3 1 1 x 2 これを解いて 5 π 003 <02 (2) 2cos20+3sin0-3=0 (4) 2sin0tan0=-3 Op.226 EX88 練習 ③ 140 (1) 2cos20+cos0-1=0 0≦0 <2πのとき、次の方程式、不等式を解け。 (2) 2 301gin A-250
三角関数

Answers

✨ Jawaban Terbaik ✨

どうでしょ

うぃ

わかりました!
ありがとうございます!

Post A Comment
Apa kebingunganmu sudah terpecahkan?