Mathematics
SMA

エオの出し方を解答より具体的に教えてください🙇‍♀️

数学Ⅰ データの分析 共通テスト 共通テスト 重要度 34 変量変換による統計量の変化 差が 重要度 Skill 定義に従って考える! 変量xの平均値をx,分散をs.2とし,変量x と変量yの共分散を 8xy とする。 z=ax+b (a, bは定数) として新しい変量zをつくる。 Z の平均値はz=ax+b 0.9 の分散 s22はs=a's Sx Z との共分散 Szy は Szy=axy 数学Ⅰ Check zとし, z4x+1とするとき, zの平均値は 2つの変量xyがあり、xの平均値 x を 2, 標準偏差 Sx を2とする。 アイ, 標準偏差 sz は ウ である。 また z との相関係数 rzyはxとyの相関係数 rxオ 倍である。 解答 回出 z = -4x+1=-4・2+1=-7 xzの分散をそれぞれ Sx', sz2 とする。 Sz = √√sz² = √(−4) ² s² = 4sx = 4·2 = 8 xとyの共分散をxyzとyの共分散を Szy, yの標準偏差を sy とする。 Szy4sxy より Szy -45xy rzy = = SzSy 4SxSy 4.Sx=(-1) rxy 4 SxSy x 10 深める よって, rzy は rxyの1倍である。 「ax+b と yの相関係数」が「xとyの相関係数」 とどのように違うかは、順を追って次のように 考えるとよい。 まず, ax+b について 平均値: 各値がα倍になり増えると,平均値も倍されても増える。 偏差 : 値axi + b の偏差は平均値 ax +b との差なので α(xx) 方が強い。 分散: 以上とった (0) つまり,bを加えることは影響せず, αだけが影響して,α倍になる。 分散は偏差の2乗の平均値。 偏差がα倍なので,分散は2倍になる。 標準偏差 : (標準偏差)=(分散)より,分散がα 倍なら標準偏差は = |a|倍になる。 したがって,ax+b と yについて はない。 共分散共分散は2変量の偏差の積の平均値。 一方の変量だけ偏差がα 倍になるので,共 分散もα倍になる。 (共分散) 相関係数(相関係数)=(標準偏差の積) より倍になる。すなわち,4>0のときはも そのキキ <0のときは1倍になる。

Answers

No answer yet

Apa kebingunganmu sudah terpecahkan?

Pengguna yang melihat pertanyaan ini
juga melihat pertanyaan-pertanyaan ini 😉