Mathematics
SMA
Terselesaikan

赤い矢印のところの変形の過程を知りたいです。お願いします🙇‍♀️

65 66 和 k=1 √k+2+√√k+3 次の数列の初項から第n項までの和を求めよ。 ① 1, 1 142 1+2+3. 1 1+2' 1+2+3' 1+2+3+4’ 7 9 1~n-1 = 項数nに 4STEP数学B x²+x²+.+x^-1 n-1 -(3n-2)x" 198- 辺々引くと (1-x)S=1+3(x+x2+. 67 よって (1-x)S=1+ 3x(1--1 (3n-2)xn 1-x すなわち -1-1=2D (1-x)S= 1 + 2x - (3n+1)x"+(3n-2x+1 1-x as+a1=28 したがって 6 A S= 1+2x-(3n+1)x"+(3n-2)xn+1 (1-x)2 68 (1) 第群は2"-1個の自然数を含むから,第 n群の最初の自然数は, n≧2のとき (1) n2 が初めて現れるのは、第n群の末 第1群から第n群までの項数は 1+2+3+…+n=1mm(n+1) よって,n2 が初めて現れるのは 第 12/2 n(n+1)項 (2)第1群から第n群までの項数は 1 on(n+1) であるから,第100項が第 るとすると 1-2 (n−1)n<100≤½n(n+1) (n-1)n <200≦n(n+1) 2"-1-1 (1+2+ ...... +2"-2)+1=- +1 13.14182,14・15=210 であるから よって す自然数nは n=14 第1群から第13群までの項数は 2-1 =2"-1 ・13・14=91 2 これはn=1のときも成り立つ。 (S ゆえに、第100項は第14群の100- したがって,第n群の最初の自然数は 2"-1 の数である。 よって、 第100項は 92=81 2"-1≤500<2" ① (2)500が第n群にあるとすると 2°=256,2°=512であるから, ①を満たす自然 数nは n=9 500 第9群の第項であるとすると 29-1+(m-1)=500から m=245 よって 第9群の第245 項 (3) 第n群にある自然数の列は初項が2"-1, 末項 が2"-1, 項数が2"-1 の等差数列である。 よって, その和は .2"-1(2"-1+2"-1)=2"-2(32"-1-1) 69 ■指針 (3) 第群にあるすべての自然数の 2 12² + 2 ² + ... + n² =—=—=—-— n ( n n(n+1 したがって, 第13群までにあるす の和は 131 13 IM +k(k+1)(2k+) ・13・14 因数分 (20·13-14)² +3.13 K=1 62 K={{n+1} =11.12.13-14(13-14+27+1)

Answers

✨ Jawaban Terbaik ✨

通分してxで整理しているということですね

絶対合格

ありがとうございます!

Post A Comment
Apa kebingunganmu sudah terpecahkan?