Mathematics
SMA

赤で印を付けた所のan=にする方法が分かりません😭隣の※の所をみても分かりません💦

468 基本 36 an+= pa,+g”型の漸化式 解答 00000 =3a=20.3 によって定められる数列(大般項を求めよ。 用して考えてみよう。 指針 漸化式 α+1=pan+f(n) において,f(n)=g" の場合の解法の手順は 基本 34 基本42,45 ①f(n) に n が含まれないようにするため, 漸化式の両辺を Q+1で割る。 anti-.an1 gg” - f(n) = となり,nが含まれない。 [2]=b, とおくとbn+1= q →bm+1=@bn+の形に帰着。・・ n+1で割る CHART 漸化式 αn+1=pan+g" 両辺を g" an+1=2an+3+1 の両辺を 37+1で割ると =b とおくと 2 • an+12.an 3n+1 3 3n = bn+1= -bn+1dc=d. 2an 2 an +1 3n+1 33" の方針 an 3 3" (S+ d) Stad 2 これを変形すると bn+1-3= (bn-3)-d 3 a1 3 また b1-3=3 -3= --3=-2\ 3 2 よって, 数列{bm-3}は初項-2,公比 の等比数列で 2n-1 bn-3=-2(3) an=3"bn=3.3"-3・2・2n-1(*) 33.2" ゆえに an=3-2(3) n-1 an+1=pan+gなど 既習の漸化式に帰着 させる。 特性方程式 2 a=1/23a+1から α=3 2 よって J [別解] an+1=2an+3+1 の両辺を2"+1で割ると An+1 an 3 + 2n+1 (22) an 3 \n+1 a1 3 + 2" よって, n≧2のとき n=1/3\k+1 bn=b₁+ k=11 n-1/2 =b₁+ Σ k=1\ (2)()-1) 3 2 2 =30 3 ) = = 2¹ 2 2/10)+ ① 3-13() -3.0 ((+2 =3.31.2.5 2-1 31 an+1=pantq は、 辺を+1で割る方法 でも解決できるが, 差数列型の漸化式の 処理になるので,計算 は上の解答と比べや や面倒である。 n=1のとき 3(1/2)-3=12/27 b=1/2から、①はn=1のときも成り立つ。 したがって an=2"bn=3.3"-3.2"=3" + 1-3.2" ゲーム a

Answers

No answer yet

Apa kebingunganmu sudah terpecahkan?