Mathematics
SMA
Terselesaikan

二次関数です、(1)のグラフが画像のようになるのは理解できたんですが(2)でこのように場合分けできて、グラフの形が画像のようになるのはなぜですか?

例題 67 定義域によって式が異なる関数のグラフ について,次の関数のグラフをかけ、 (2x (0 ≤ x < 1) JE 関数f(x)=14-2x (1≦x≦2) (1) y=f(x) (2) y=f(f(x)) 思考プロセス « Action 関数の値f(a)は、f(x)の式のすべてのxにaを代入せよ 対応を考える α が関数 f(x) になっても、同様に考える。 (2) f(f(x)) f(f(x)) 解 (1) y = f(x)のグラフは右の図。 (2) f(f(x)) (2 f(x) (0 ≦ f(x) < 1) 14-2f(x) (1≦f(x) ≦ 2) であり, (1) のグラフより [2f(x) よって (ア) 0≦x< 3 = 2 [2 f(x) (0 ≤ f(x) < 1) 14-2f(x) (1 ≤ f(x) ≤2) xの値の範囲に直す Facti 1 3 (0<x< 1/1 2 ), 1 3 (4-25(x) (-/- ≤ x ≤ 1/2 ) 2 f(f(x)) =2f(x) = 2.2x=4x (イ) 1/12/1 ≦x<1のとき, f(x) = 2x より のとき, f(x)=2x より 3 () 1 ≤ x ≤ のとき, f(x)=4-2x より 2 <x≦2のとき, ⇒ (1) のグラフの利用 f(f(x)) =4-2f(x)=4-2・2x= -4x+4 2/2 < x≤2) f(x) =4-2x より f(f(x))=2f(x)=2(4-2x) = -4x+8 (ア)~(エ)より, y = f(f(x)) の グラフは 右の図。 15x5Z f(f(x)) =4-2f(x)=4-2(4-2x)=4x-4 O 11 3 2 2 2 2 x A 図で考える 0≤ f(x) <1,1≤ f(x) sz となるようなの他の 囲をグラフから考える。 YA 2 O 1132 2 2 (ア) (イ) (ウ) (エ) 01 X 132 2 2 f(x) の式はx=1 を境 に変わる。 場合に分ける 0≦x<1... ① のとき f(x)=2x 1≦x≦2... ② のとき f(x)=4-2x と変わるから, (ア)~(土)に 場合分けする。

Answers

✨ Jawaban Terbaik ✨

f(f(x))の中にあるf(x)から考えましょう。

0≦x<1の時 f(x)=2xなので、
f(f(x))=f(2x) となります。ここでさらに、

①0≦2x<1のとき、つまり0≦x<1/2のとき、
f(2x)=2・2x
②1≦2x<2のとき、つまり1/2≦x<1のとき、
f(2x)=4-2・2x

となります。残り二つの場合分けも同様に考えれば大丈夫です。

カイ

なるほど!ありがとうございます!

Post A Comment
Apa kebingunganmu sudah terpecahkan?