Mathematics
SMA

217.
自身の回答の[1]の記述だけ確認してほしいです。
このような記述でも問題ないですかね??

基本例題217 最大値・最小値から3次関数の決定 0<a<3 とする。 関数f(x)=2x-3ax²+6 (0≦x≦3) の最大値が10, 最小値が -18のとき,定数a,bの値を求めよ。 基本211) 指針 ① 区間における増減表をかいて, f(x) の値の変化を調べる。 ②① の増減表から最小値はわかるが, 最大値は候補が2つ出てくる。よって, その最大 値の候補の大小を比較し,αの値で場合分けをして最大値をa,b で表す。 解答 f'(x)=6x2-6ax=6x(x-a) f'(x)=0 とすると x=0, a 0<a<3であるから, 0≦x≦3におけるf(x) の増減表は次の ようになる ogalja Ba N=log 0 ゆえに x f'(x) f(x) b-27a+54 よって, 最小値f(a) = b-α3 でありb-d=-18 最大値はf(0) = b またはf(3)=6-27a+54 また、 f(0) f(3) を比較すると a 0 b 極小 b-a³ + f(3) -f (0)=-27a+54=-27(a−2) 0<a<2のとき (0) <f(3), (3)(0) 2≦a <3のとき [1] 0<a<2のとき,最大値は よって これを①に代入して整理すると ゆえに (a-1)(a²+a-26)=0 -1±√105 2 3 f(3)=6-27a+54 6-27a+54=10 すなわち b=27a-44 a³-27a+26=0 よって a=1, 0<a<2を満たすものは このとき, ① から [2] 2≦a<3のとき, 最大値は よってb=10 これを①に代入して整理すると a=1 b=-17 f(0)=b a=28 28 33 であるから,a=28>3となり,不適。 [1],[2] から a=1, 6=-17 (1) 10 384 Z(u)f(2)= 0 (最小値)=-18 ① 最大 最小 極値と端の値をチェック 大小比較は差を作る (最大値) = 10 MAID 10 -27 1 1 1 -26 261 1 -26 20 (最大値) 10 場合分けの条件を満たすか どうかを確認。 場合分けの条件を満たすか どうかを確認。 ≤x≤1) の最大 33 6章 37 最大値・最小値、方程式・不等式

Answers

No answer yet

Apa kebingunganmu sudah terpecahkan?