Mathematics
SMA

この解き方はなぜダメなんですか?

3 10 経路の問題— 右図のような格子状の街路がある. A点からB点まで最短距離で移 動する.図の格子点で,右へ行く確率は 1 点からB点まで行くとき, P点, Q点を通って行く確率をそれぞれ求め ただし, ひとつの方向しか行けない場合は確率1でその方向に進む.A よ. (類 中部大・工) A 経路1つ1つは同様に確からしくない この問題で注意することは 「ひとつの方向しか行けない場合(右図の○印の点)は確率1でその方向に 「進む」である. このため,経路の1つ1つは同様に確からしくならない. 例えば右図の R1 のように移動する確率は,○印の点を5回,それ以外の 点は(A を含めて) 4 回通るので,15×(1/2)" であり, R2 のように移動する Xが上端のときx+ X1Z LIC 4 do 1 y 2 YI これを用いて各点に到達する確率を書き こんでいくと右のようになるから、答えは P... - 2' 解答 下図の点X, Yに到達する確率がそれぞれx,yのとき, Zに到達する確率は, Y は右端でない点 1 12%,それ以外のとき 1/12 (x+y)である. Q... 35 128 確率は1°× (12) である。ここでは書きこみ方式(場合の数の O10 参照) で解いてみるが, 〇印の点を何回通るかを考えて計算してもよい。 必ずBに到達する 上側と右側がカベになっているので,必ずBに到達する. つまり,「Q を通っ てBに行く確率」 は 「Qを通る確率」 であり, QBは考える必要がない. 問題文に惑わされないよう にしよう. X 2 x Iz y 2 Y 1 16 1 8 1 4 A 6 32 4 16 上に行く確率は -00/00. 3 2 4 1 2 22 64 10 32 6 16 30/00 8 to (1+5) 1 4 10 演習題 (解答は p.52) 右の図のように東西に4本, 南北に6本の道があり,各区画 は正方形である.P,Qの二人はそれぞれA地点,B地点を同 時に同じ速さで出発し、 最短距離の道順を取ってB地点, A地 点に向かった. ただし, 2通りの進み方がある交差点では, そ 12/2 であるとする. P.QがC地点で れぞれの選び方の確率は 64 128 20 64 P 10 32 4 16 1 8 西 A Q 1 15 64 15 32 16 とする. 北 南 ●B 35 128 1(4-09114 C R1 出会う確率は(1) である.また, どこか途中で出会う確率は(2) である.. B R2 東 (北里大薬) P Q B B (2) は, 出会う地点をま ず求める。 図の対称性も 活用したい . 43
P 27/1 2/1 4.31 A - B 91 5141 35 1126 126 7.657 35 321 985762 7 126

Answers

No answer yet

Apa kebingunganmu sudah terpecahkan?