Mathematics
SMA
Terselesaikan

数3積分の問題です。
最後の面積を求める計算で∫Xではなくてyを入れる理由がわからないです。面積を求める問題ではどのように判断してyかxを置くか決めているのでしょうか。

媒介変数表示の曲線と面積(1) 基本例題 244 重要 175 重要 245 00000 (osts 7 ) と表される曲線とx軸で [福岡大〕 FEOME いちよしにな 指針 媒介変数t を消去してy=F(x) の形に表すこともできるが, 計算は面倒になる。 そこでx=f(t), y=g(t) のまま, 面積Sを 置換積分法で求める。 1 曲線とx軸の交点のx座標 (v=0となるもの値)を求める。 媒介変数tによって, x=4cost, y = sin2t 囲まれた部分の面積Sを求めよ。 解答 ②tの変化に伴う、xの値の変化やりの符号を調べる。 ③3面積を定積分で表す。 計算の際は、次の置換積分法を用いる。 s=Sydx=Sg(t)f(t)dta=f(a), b=f(B) π RECEP 0≤t≤ ① の範囲でy=0 となるtの値は また、①の範囲においては、 常に y ≧0である。 dx x=4costから -4sint, dx=-4 sintdt dt y=sin2t から dy dt =2cos2t であり、 == π とすると dt ゆえに,右のような表が得 られる(は減少は増 加を表す)。 よってS=Sydx/ =S₁sin2t· (–4 2 t dx dt 2t.(-4sint)dt =45** sin2t sintdt =8f5d sin' tcostdt 8 -* - - in²":1² - 3 -sin = xは単調に変化 dy 0 4 + 0 ... + K y₁ π 2√2 0 1 72 t=0, 7 2√2 π 2 π 2 (t=0) 4 xtの対応は次のようにな る。 t 0 → π った 2 x 4 → 0 8章 She sin' t(sint)'dt 38 面 積 また、Ostsではy≧0で あるから, 曲線はx軸の上側 のがある。 面積の計算では、積分区間・ 上下関係がわかればよいの だから、左の解答のように, 増減表や概形をかかなくても 面積を求めることはできる。 しかし、概形を調べないと面 積が求められない問題もある ので,そのときは左のように して調べなければならない。 12 ル

Answers

✨ Jawaban Terbaik ✨

xで積分するかyで積分するかどちらで計算すれば求める面積が求められるか考える

Post A Comment
Apa kebingunganmu sudah terpecahkan?