Mathematics
SMA
Terselesaikan

はじめになぜa>0としたのか
最後の行の-b ゆえにb=0になるところがわかりません。

問題 120 極限と係数決定 [2] 次の等式が成り立つように,定数a, 6の値を定めよ。 lim{v/x-2 -(ax+b)} = 0 解法の手順・ Action 根号を含む関数の不定形の極限は,分子または分母を有理化せよ FRAL1 +Enz ≦0 のとき, 与えられた極限は∞に発散するから a>0 ↑ 発散しな いように!! X→∞ ・1 分子の有理化を行う。 2 lim X→∞ ゆえに √x²-2-(ax+b) _{√x² − 2 − (ax+b)}{√x² − 2 + (ax+b)} √x²-2+(ax+b) (1-α²)x2-2abx- (2+62) √x²-2+(ax+b) 分母の最高次の項で,分母・分子を割り、この極限が収束する条件を考える。 32の結果と極限値からα, b の値を求める。 b=0 (1-a²)x-2ab- b 今の中で 顔ともはズが 女になる √1-2 x² +a+ - x 「よってx∞のとき, これが収束する条件は 1-a² = 0 a>0 より α = 1 であり,このときの極限値は 2+6² -26 x 2 x² +1+ 2 +62 したがって Pointly 近線 b x a=1,6=0 x = この - 26 2 2²-2-(ax+b)^ ✓²-2+ax+b) = -b →例題117, 119 <lim√x-2=8, a < 0 のとき lim{-(ax+b)}= X00 x →∞ 例題120 の結果は、右の図のように,y=√x-2 と直 線y=x との差が、xの値が限りなく大きくなるにした がって限りなく0に近づくことを示している。 すなわち = =x²-2-2²-2ab5分子を有理化する。 a=0のとき lim{-(ax+b)} = -6 x →∞ よって, a≧0のとき + (ax+b) lim{√x² − 2 − (ax + b)} = 00 (1-a²x²-2abx+6x→∞より,x>0と考 えて,分母, 分子をxで √x²=2+ (0216) 割る。 =8 分母のみの極限値は 2 YA lim_ X→∞ y=x +a+ = 1+a であるが, a>0 より 0 にならない。 b x -2 3章 関数の極限 10
極限値 係数

Answers

✨ Jawaban Terbaik ✨

a>0なのは書き込まれている通り収束するための必要条件だからです。

その極限値とは元々問題に与えられた式の左辺にa=1を代入したものであり、その収束先は0になるので-b=0を解いてb=0です。

Post A Comment
Apa kebingunganmu sudah terpecahkan?