x^2-(k+3)x+4k≧0ということは、x^2-(k+3)x+4kのグラフは、x軸と接する、もしくはx軸と共有点を持たない、ということです。
x軸と接するときD=0、x軸と共有点を持たないときD<0なので、2つをまとめてD≦0になります。
Mathematics
SMA
🔟(1)解説の赤くなっている部分で、なぜD≦0になっているのかわからないので教えていただきたいです!
10 (1) 2次不等式 ー (k +3)x+4k ≧0 すべての実数xについて成り立つような定数の値
の範囲を求めよ。
x ² (k+3)x+ 4k=09181²12 D²57
ス
DEO
D = ( 12+3) ²³= 16 12 = f²2²-40k+9€0
Not
1 ≤ R ≤ 9
%
Answers
Apa kebingunganmu sudah terpecahkan?
Pengguna yang melihat pertanyaan ini
juga melihat pertanyaan-pertanyaan ini 😉
Recommended
詳説【数学A】第1章 個数の処理(集合・場合の数・順列組合)
6064
51
詳説【数学Ⅱ】第3章 三角関数(前半)~一般角の三角関数~
4871
18
詳説【数学Ⅱ】第4章 指数関数と対数関数
3373
8