Mathematics
SMA
高校一年生二次関数の最大値最小値の問題です。
どう考えてもわからないので教えてください🥲答えは上から④、①、①です。
【1】2次関数
(1) a≦0のときの最大値 M (a) を求めると,
M(a)= 1
-a²
y=x²+2ax-3a²(0≦x≦2) について,次の問いに答えよ.
1 a²
3 3q² 4 -3a² 5 4a-3a²
(2) 0≦a≦2のときの最大値 M (a) を求めると,
M(a)= 2
-2a² 2 - 4a 3 4a 4: 2a²
(3) a≧2のときの最大値 M (α) を求めると、
M(a)= 3
-3a² +4a-4
2-3a² +8a-4
5 a² +4a
3 -3a² +4a-1
Answers
Apa kebingunganmu sudah terpecahkan?
Pengguna yang melihat pertanyaan ini
juga melihat pertanyaan-pertanyaan ini 😉
Recommended
詳説【数学Ⅰ】第一章 数と式~整式・実数・不等式~
8923
116
数学ⅠA公式集
5641
19
詳説【数学Ⅱ】第3章 三角関数(前半)~一般角の三角関数~
4872
18
詳説【数学Ⅰ】第三章 図形と計量(前半)~鋭角鈍角の三角比~
4549
11