Mathematics
SMA
Terselesaikan
星マークつけた所の、bn+1 - bn = 2n+3 はどこから分かるのですか?
235²
235* 条件a1=3
b.-11.0
=
an
(1) bn
bi
18
1
an+1
= 3
〃
bnti-bm=int3
とするとき, 数列{bn}の一般項を求めよ。
1
an
hミュのとき
h-l
bn = b₁ 1 ≤ (2613)
k=1
3+2 4+² (n-17h + 3 (4-1)
2n+3によって定められる数列{an}がある。
これはh=1を満たす。
buanzazn
3th ²-h+34-3=h² + 2h
bn+1=bh+(zhts)
一般頃
2h+3
bn =
and yom
上
3
Answers
Apa kebingunganmu sudah terpecahkan?
Pengguna yang melihat pertanyaan ini
juga melihat pertanyaan-pertanyaan ini 😉
Recommended
詳説【数学A】第1章 個数の処理(集合・場合の数・順列組合)
6067
51
詳説【数学Ⅱ】第3章 三角関数(前半)~一般角の三角関数~
4872
18
詳説【数学B】漸化式と数学的帰納法
3186
13
詳説【数学B】いろいろな数列
3162
10
わかりました!ありがとうございます!