Mathematics
SMA
Terselesaikan

重解がなぜ黄色線のように求めることができるのかが分かりません。教えてくださると嬉しいです🙇‍♀️

重要 例題119 2変数関数の最大 最小 (4) そこで、2x+y=tとおき,これを条件式とみて文字を減らす。 この方程式が実数解をもつ条件を利用すると、tのとりうる値の範囲が求められる。 「実数x,yがx?+y?=2 を満たすとき、2x+yのとりうる値の最大値と最小値を 187 【類南山大) 基本 98 実数解をもつ→D20 の利用。 HART 最大·最小 =Dt とおいて, 実数解をもつ条件利用 3章 13 NAHC 解答 2x+y=tとおくと これをx°+y=2に代入すると ソ=t-2x の 実数 a, b, x, yにつ いて,次の不等式が成り立つ (コーシー·シュワルツの不 等式)。 参考) x°+(t-2x)°=2 5x-4tx+t?-2=0 このxについての2次方程式②が実数解をもつっための条件は, 整理すると 2の判別式をDとすると [等号成立は ay=bx] a=2, b=1 を代入すると D20 D 『ここで =(-2t)-5(?-2)=-(?-10)さるさケ (ー x°+y?=2 であるから D20 から でピ-10<0 ルード ス (2x+y)°<10 よって> これを解いて -V10 Sts10 ち -10 2x+yS/10 2t をもつ。 5 (等号成立はx=2y のとき) このようにして,左と同じ答 えを導くことができる。 t=±V10 のとき D=0 で, 2は重解x= -4t 三 2.5 2/10 t=±V10 のとき x=± 5 10 のから y=土 5 (複号同順) 2/10 V10 のとき最大値、10 5 したがって xミ 5 ソミ 2/10 /10 xミー 5 のとき最小値 -/10 ソ=ー なぜ5 2次不等式 本故
二次関数

Answers

✨ Jawaban Terbaik ✨

2次方程式の解の公式がありますよね。
重解を持つということは、分子の±√(b^2-4ac)の部分が=0となります。
(これが判別式D=0の由来です)

なので、解の公式の上記の部分の無くしたもので、解を求めることができます。

k

スッキリしました!ありがとうございます!

Post A Comment
Apa kebingunganmu sudah terpecahkan?