Mathematics
SMP
こういう系の問題が苦手です。誰か助けてください
理解を深める1問!
2
右の図のように,
思判·表
正方形ABCD の辺
BC上に点Eをとる。
頂点A, Cから線分
DE に垂線をひき,
それぞれの交点をF,
Gとするとき,△AFD=△DGC である
ことを証明しなさい。
GAF
B
△AFDと△DGCで,
仮定より,ZAFD=ZDGC=90° ①
四角形ABCDは正方形だから,
TYO
AD=DC
ZADC=90°
…3
3から, ZADF=90°-ZGDC
ADGCの内角の和は180°だから,
ZDCG=180°ー(トDGC+ZGDC)
=180°-(90°+ トGDC)
=90°-ZGDC
5)
④, ⑤から, ZADF=ZDCG
1, 2, 6から, 直角三角形の斜辺と1つ
の鋭角が,それぞれ等しいので,
(6
4
△AFD=△DGC
Answers
No answer yet
Apa kebingunganmu sudah terpecahkan?
Pengguna yang melihat pertanyaan ini
juga melihat pertanyaan-pertanyaan ini 😉
Recommended
【数学】覚えておいて損はない!?差がつく裏ワザ
11146
86
【夏勉】数学中3受験生用
7254
105
【テ対】苦手克服!!証明のやり方♡
6962
61
【夏まとめ】数学 要点まとめ!(中1-中3途中まで)
6304
81