Mathematics
SMA

こういう問題のとき、最後はx,yは実数だから…っていうふうにして範囲を絞っていくと思うんですけどx,yがなんで実数って確定するんですか?虚数ではダメなんですか?誰か教えてください!お願いします!

重要 例題87 2変数関数の最大·最小 (2) yの関数 P=x°+3y?+4x-6y+2 の最小値を求めよ。 (2) x, yの関数=x°-2xy+2y?-2y+4x+6 の最小値を求めよ。 「なお,(1), (2) では, 最小値をとるときのx, yの値も示せ。 OO00 重要 例題 (1) 関数 y= (2) -1Sxミ 値を求め。 (1) 類豊橋技科大,(2) 類 摂南大1 指針> (1) 特に条件が示されていないから, x, yは互いに関係なく値をとる変数である。 Ix, yのうちの一方の文字(ここではyとする)を定数と考えて、Pをます。 指針>4次関数 に帰着で このようなときは,次のように考えるとよい。 (2) 繰と がtG 2次式とみる。そして, Pを基本形 a(x-b)°+qに変形。 2 残ったg(yの2次式)も,基本形 6(yーr)+s に変形。 3 P=aX°+by'+s (a>0, b>0, s は定数)の形。 →PはX=Y=0のとき最小値sをとる。 (2) xyの項があるが,方針は(1) と同じ。 Q=a{x-(by+c)}\+d(y-r)+sの形に刻 紙 CHART) 解答 の(1) x=tと yをtの式 CHART 条件式のない2変数関数 -方の文字を定数とみて処理 ソ=tー 解答 t20 の範囲 (1) P=x°+4x+3y?-6y+2 =(x+2)°-2°+3y?-6y+2 re=(x+2)°+3(y-1)-3·12-2 = (x+2)°+3(y-1)-5 x, yは実数であるから よって, Pはx+2=0, y-1=0 のとき最小となる。 ゆえに 最小となる (まず,x について基料。 よって (2) x°-2x- t=(x 5S▲次に, yについて基料 P=aX?+bY?+sの税 (x+2)°20, (y-1)20 (実数)20 -1SxSI (x+2=0, y-1=0を割 x=-2, y=l yをtの y=t のの範囲 x=-2, y=1のとき最小値 -5 と (2) Q=x°-2xy+2y°-2y+4x+6 =x-2(y-2)x+2y?-2y+6 =(x-(y-2)}-(y-2)°+2y?-2y+6 =(x-y+2)°+y°+2y+2 38- t=-2 0S+ x+ x+ の形に。 t=2 で まず,xについて基 t=-2 の ゆえに イ次に,yについて基 KQ=ar+b?"+s0% (実数)20 よって x, yは実数であるから よって, Qはx-y+2=0, y+1=0 のとき最小となる。 x-y+2=0, y+1=0 を解くと t=2 のと ゆえに よって (最小値をとるよ yの (連立方程式)の解 () 8 .0)=(c ゆえに x=-3, y=-1 x=-3, y=-1のとき最小値18動大郎 -1Sx= 以上から (1) x, yの関数P=2x*+y°-4x+10y-2 の最小値を求めよ。 87 (2) x, yの関数Q=x*-6xy+10u 練習 練習 88 なお 1) Dらと。

Answers

No answer yet

Apa kebingunganmu sudah terpecahkan?