年級

問題的種類

物理 高中

21題 教教我QAQ

Section 11.3 Angular Momentum J-s behind rmv a he ur 265 = ? a ter 30. Example 11.1: A 58.1 Iw COMP string and whirled at 18. Express the units of angular momentum (a) using only the funda- momentum of magr mental units kilogram, meter, and second; (b) in a form involving the circular path. Fir newtons; (c) in a form involving joules. marw horizontal and (b) the 19. Use data from Appendix E to make an order-of-magnitude esti- 31. Example 11.2. A stai mate for the angular momentum of our Solar System about the Max 27 the end of its lifetime galactic center. mu = 17.293 of radius 4.96 X 10' 20. A gymnast of rotational inertia 63 kg•m? is tumbling head over heels dwarf of radius 4.21 with angular momentum 460 kg•m?/s. What's her angular speed? 17.99 acted on the core, fine A 660-g hoop 95 cm in diameter is rotating at 170 rpm about its 32. Example 11.2: Astro 22. A 1.3-th-diameter golf ball has mass 45 g and is spinning at central axis. What's its angular momentum? L: 1W=0-66*(0-95) x 140x277.10 km and determin core that collapsed to 3000 rpm. Treating the golf ball as a uniform solid sphere, what's ing with a period of 4 its angular momentum? 18-3 33. Example 11.2. The s 10-598 rpm With her arms outstre Section 11.4 Conservation of Angular Momentum tational inertia is 3.5 23. A potter's wheel with rotational inertia 6.20 kg•m? is spinning (Fig. 11.6b), her rot freely at 20.0 rpm. The potter drops a 2.50-kg lump of clay onto her final spin rate? L = 6 2 x 2-1 = 12-99~13 - 2x2 22 13= 60.48)" x 2.5 W W = 2 . X z W = 20x2T 60 ²2.1 ~ 1 12.574

待回答 回答數: 0
物理 高中

第21題 到底要怎麼寫ಥ_ಥ

Section 11.3 Angular Momentum J-s behind rmv a he ur 265 = ? a ter 30. Example 11.1: A 58.1 Iw COMP string and whirled at 18. Express the units of angular momentum (a) using only the funda- momentum of magr mental units kilogram, meter, and second; (b) in a form involving the circular path. Fir newtons; (c) in a form involving joules. marw horizontal and (b) the 19. Use data from Appendix E to make an order-of-magnitude esti- 31. Example 11.2. A stai mate for the angular momentum of our Solar System about the Max 27 the end of its lifetime galactic center. mu = 17.293 of radius 4.96 X 10' 20. A gymnast of rotational inertia 63 kg•m? is tumbling head over heels dwarf of radius 4.21 with angular momentum 460 kg•m?/s. What's her angular speed? 17.99 acted on the core, fine A 660-g hoop 95 cm in diameter is rotating at 170 rpm about its 32. Example 11.2: Astro 22. A 1.3-th-diameter golf ball has mass 45 g and is spinning at central axis. What's its angular momentum? L: 1W=0-66*(0-95) x 140x277.10 km and determin core that collapsed to 3000 rpm. Treating the golf ball as a uniform solid sphere, what's ing with a period of 4 its angular momentum? 18-3 33. Example 11.2. The s 10-598 rpm With her arms outstre Section 11.4 Conservation of Angular Momentum tational inertia is 3.5 23. A potter's wheel with rotational inertia 6.20 kg•m? is spinning (Fig. 11.6b), her rot freely at 20.0 rpm. The potter drops a 2.50-kg lump of clay onto her final spin rate? L = 6 2 x 2-1 = 12-99~13 - 2x2 22 13= 60.48)" x 2.5 W W = 2 . X z W = 20x2T 60 ²2.1 ~ 1 12.574

待回答 回答數: 0
數學與統計 大學

大一公衛系微積分,求第二題解

公衛系 微積分期末考 (28/12/2018) 1. Use the Laplace transform to solve the differential equations. (1) j(t)+2y(t) = x(t), y(0)=1, x(t)=10, t20 (20) (2) Intravenous glucose is a treatment. Disposed at a fixed rate k grams per minute inputs into the blood, while blood glucose will be converted to other substances or moved to another place, at a rate proportional to the amount of glucose in the blood, the proportionality constant is a (a> 0), the initial amount of glucose in the blood is M. A. Find the variation in the amount of glucose in the blood (15) B. Determining the equilibrium, the amount of glucose in the blood. (5) = 2. SI Epidemic Model : The size of the population, n+1, remains fixed. Let i(t) be the number of infectives at time t, and let s(t) be the number of individuals who are susceptible. Given an initial number of infectives iO), we would like to know what will happen to i(t). SI Epidemic Model is described by the differential equation. di(t) = k·i(t).s(t) ......(5.1) dt i(t)+s(t)=n+1 i(0)=i, (1) Solve this differential equation of the SI Epidemic Model (5.1). (10 h) (2) What is the peak times t of the epidemic spread? (10) 3. Consider the Two-compartment physiological models and is shown in figure 1. C1 (t) represent the drug concentration in the first compartment and C2 (t) represents the drug concentration in the second compartment. Vi and V2 represent the compartment volume. Use the first order linear differential equation general solution to solve the C1 (t) (20 ) and use the Laplace transform to solve C2 (t). 【20 分). | 世」!()

待回答 回答數: 0
讀書計畫 高中

第17題應該要怎麼算

| 3-2) 1-5 馆 一 2722 125 立 麥卡1 投影 (D)14.哪兩種投影法中格陵蘭的面積最接近真實情況? (A)甲乙 (B)甲丁 (C)乙丙 D丙丁 (十) 15. 若要繪製各國使用 Instagram 的人口比例分布圖,最適合使用下列何種投影法? (AT (B)甲乙 (C)ZPJ D内工 (C)16. 在甲~丁四張圖中的粗線線段,何者並非大圓航線!? 距: 距離不足 (A) 甲 (B)乙 (C)丙 DT 大A夫婦參加蘇澳地區舉辦的半日生活節,拿到右方蘇 澳125.NER 的經建版地形圖進行活動,活動中有好幾個 關卡,各關也有關主進行解說,透過闖關活動可以讓參 加者更了解當地的發展脈絡。請問: S 5 D17. 大A拿到提示卡後,沿著臺九線從第一關蘇澳國 中前往第二關蘇澳海事職校,在不考慮任何自然 與人為因素耽誤的情況下,如果以步行時速5公 里/小時來計算,大A夫婦大約會花幾分鐘才能 抵達下一關? 334 335 ( (A) 6 (B) 12 ( (C) 23 (D 30 5 7 5 10.25 5 963 安國中, 斗法 三重 美泉 272 过国小 全世 336 337 0.2541) OS: 1.35% 30 359 (C)險 第三關蘇澳車站的關主出了一道超級難題,要回答出來才能拿到下一關的提示卡,題目是:「若以一 度緯度的經線長為110.7公里來計算,蘇澳車站的緯度最接近北緯幾度?」答案最可能為下列何者? (A) 22.8 (B) 23.5 (C) 24.6 (D) 25.1 50 (4) 19. 最後一張提示卡:「在最高的地方,迎來最後的禮物。」大A夫婦要前往的地方最可能位在何處 safizsoa 50 = = 12.5km 1 : 50 m ( (290.000 2,78 (A) (335350, 2721900) (B) (2721900 ,335330) (C) (2721800,336300) (D) (336300,2721800) 0 小瑜蒐集淡水河出海口與臺北港之地 甲 六塊厝漁港 質圖,如甲圖所示,若圖幅方格邊長 三芝區 IZ 乙 TES HEL2 于

待回答 回答數: 0