年級

科目

問題的種類

自然科學 大學

想問3-9的a跟c

Problems 3-1. Explain the difference between *(a) random and systematic error. (b) constant and proportional error. *(c) absolute and relative error. (d) mean and median. *3-2. Suggest two sources of systematic error and two sources of random error in measuring the length of a 3-m table with a 1-m metal rule. 3-3. Name three types of systematic errors. *3-4. Describe at least three systematic errors that might occur while weighing a solid on an analytical balance. *3-5. Describe at least three ways in which a systematic error might occur while using a pipet to transfer a known volume of liquid. 3-6. Describe how systematic method errors may be detected. *3-7. What kind of systematic errors are detected by varying the sample size? 3-8. A method of analysis yields masses of gold that are low by 0.4 mg. Calculate the percent relative error caused by this result if the mass of gold in the sample is (a) 500 mg. (b) 250 mg. V(c) 125 mg. (d) 60 mg. 3-9. The method described in Problem 3-8 is to be used for the analysis of ores that assay about 1.2% gold. What minimum sample mass should be taken if the relative érror resulting from a 0.4-mg loss is not to exceed *(a) -0.1%? (b) -0.4%? (c) -0.8%? (d) - 1.1%? 3-10. The color change of a chemical indicator requires an overtitration of 0.03 mL. Calculate the error if the total volume of titrant is percent relative (a) 50.00 mL. (c) 25.0 mL. 3-11. A loss of 0.4 mg of Zn occurs in the course of an percent relative analysis for that element. Calculate the error due to this loss if the mass of Zn in the sample is *(b) 10.0 mL. (d) 30.0 mL. 190 (c) 188 (d) 4.52 x 103 4.63 x 103 4.53 x 10 ³ √6 *(a) 30 mg. (b) 100 mg. *(c) 300 mg. (d) 500 mg. 3-12. Find the mean and median of each of the following sets of data. Determine the deviation from the mean for each data point within the sets, and find the mean devi- Vation for each set. Use a spreadsheet if it is convenient. *(a) 0.0110 0.0105 (b) 24.53 0.0104 24.68 24.81 24.77 39.61 862 (f) 850 MA 3-13. Challenge Problem: Richards and W the molar mass of lithium and colle data. 24.73 Experiment 1 2 3 4 5 6 194 447 X 10 7 448 X 107 4.58 X 10 (a) Find the mean molar t workers. (b) Find the median molar ma (c) Assuming that the cam molar mass of lithium is the absolute ertor and of the mean value demi Willard. (d) Find in the chemical ues for the molar mus since 1910, and ag a table or spreadshera 1817 given in the a Richards and Willd. Com mass versus year to la of lithium has chang Suggest possible abruptly about 18 ant de (e) The incredibly deals Richards and W that major changes will occur. Disc calculation in pat (f) What factors ha since 1910? (g) How would you mass? 6See Chapter 2 of Applications of Microsoft Excel in Analytical Chemistry, 4th ed., for information about statistical 7T. W. Richards and H. H. Willard, J. Am. Chem. Soc., 1910, 32, 4, DOI: 10.1021/ja01919a002. built-in statistical functions. "Answers are provided at the end of the book for questions and problems marked with an asterisk The I of ₂ or inc rce of able vas error c often in individu ate resul data in rtainties. dimensio andom e analysts The result

待回答 回答數: 0
自然科學 大學

求第二題、第七題詳解

題1 題3 題4 LT 盒汪坊 一汪江 題5 題6 Homework 3 1. 電阻值為 Ri=# 3G, R2= 60和 Ra=5Q的電阻器連接成如下圖 無呢系列的電阻器 ; 從X和 Y 兩端連接的等效電阻值為何? 2. 下圖電路中的伏特計量到的電壓為 12V ; (a)求電池的電動勢 &為何? (b)當開關 S 關閉時,安培計上的電流為何? 3. 一混合動力的新車質量為 1200 公斤, 這輛車使用 360 伏特 電池驅動電動馬達產生的最大電流為 200 安培 。當汽車以 22 公里/小時在一斜坡等速爬升 並不使用汽油馬) 達來協助 gp 找到最大的坡度 ? 4. 如圖 ,一個錐狀導體長度為 L ,左右兩側的半徑分別為3和 6 (且 2多,它的電阻率為p,將它的左右兩側分別接在電池兩 端,求此導體的電阻為何? 5.一個導體球殼內外徑分別為 3和 5,它的電阻率為p,將它的 內外徑分別接在電池兩端,求此球殼的電阻為何? 6.一平行板電容器具有面積 10 cm?的板,由 0.1mm 的玻璃絕 緣層隔開,電阻率p=1.2 x 1070O.m,介電常數k =5.6。(a) 如何以電路圖中表示這種漏電的電容 ? (b) 求出該電容器的 時間常數,該時間常數只取決於絕緣材料的特性。 7.如圖 ,一無電荷的電容 和 和一電阻 8&=5x10 人 ge=5V 串聯連接在一起。求(a)電路的時間常數? (b)電容的 電量? (o) 的還大生 (d)電 量的時間函數? (e)電流的 時間函數? A bm G@ 六 R / 1 AS Y防 自 題1 題2 題4

待回答 回答數: 0
1/2