年級

科目

問題的種類

數學與統計 大學

大一公衛系微積分,求第二題解

公衛系 微積分期末考 (28/12/2018) 1. Use the Laplace transform to solve the differential equations. (1) j(t)+2y(t) = x(t), y(0)=1, x(t)=10, t20 (20) (2) Intravenous glucose is a treatment. Disposed at a fixed rate k grams per minute inputs into the blood, while blood glucose will be converted to other substances or moved to another place, at a rate proportional to the amount of glucose in the blood, the proportionality constant is a (a> 0), the initial amount of glucose in the blood is M. A. Find the variation in the amount of glucose in the blood (15) B. Determining the equilibrium, the amount of glucose in the blood. (5) = 2. SI Epidemic Model : The size of the population, n+1, remains fixed. Let i(t) be the number of infectives at time t, and let s(t) be the number of individuals who are susceptible. Given an initial number of infectives iO), we would like to know what will happen to i(t). SI Epidemic Model is described by the differential equation. di(t) = k·i(t).s(t) ......(5.1) dt i(t)+s(t)=n+1 i(0)=i, (1) Solve this differential equation of the SI Epidemic Model (5.1). (10 h) (2) What is the peak times t of the epidemic spread? (10) 3. Consider the Two-compartment physiological models and is shown in figure 1. C1 (t) represent the drug concentration in the first compartment and C2 (t) represents the drug concentration in the second compartment. Vi and V2 represent the compartment volume. Use the first order linear differential equation general solution to solve the C1 (t) (20 ) and use the Laplace transform to solve C2 (t). 【20 分). | 世」!()

待回答 回答數: 0
數學與統計 大學

第二題的d的積分範圍要怎麼設

6 Kx, lo, 14) 1. (10 points) How many even numbers can be formed from the digits 9, 1,4,5,6, and 9 if each digit can be used only once? 2. (50 points) Let X and Y denote the lengths of life, in years, of two components A and B, respectively, ş! x2 in an electronic system. If the joint density function of these variables is 64 0<x<1-ycl EX,Y) Rx hy 0 < x <1.0<x<1-x: f(x, y) = elsewe jey.301-4)*84f CX74 3 Rxdy * 了 1' Jay You Determine the value k; FED ECX) = 86 x 6xci->)dy cy) 3(1-2) ² (b) Find the marginal distributions, expected values, variances, and covariance of X and Y; dy= 1 (C) Determine whether X and Y are dependent or independent; X(d) Find the probability that the length of life of component A is less than that of component B; X(e) Find the probability that the length of life of component A is greater than one year, given the ar length of life of component B is equal to two year. xcy 1313. (10 points) The probability that a flight departs on time is 0.3; the probability that it arrives on time is 0.3; and the probability that it departs and arrives on time is 0.1. Find the probability that it arrives on time, given that it did not depart on time. ex oin 4. (20 points) The waiting time, in hours, between successive speeders spotted by a radar unit is a continuous random variable with cumulative distribution -8x76 / le = 1- e 11-e dx x ZO; dv=e 0, f(x) = f'(X) = x < 0. 8 e V= 1 84 (a) Find the probability of waiting less than 10 minutes between successive speeders; hind the wyerane waiting time between successiye speeders spotted by a radar unit. 013-0il u=X -8X -81 -8% ge

待回答 回答數: 0