年級

科目

問題的種類

數學與統計 大學

微積分

2 -A 微積分練習題 110.12.28 1. 試用微分的方法求 的近似值(以分數表示) 26.98 2. 將水注入右圖圓錐體容器中(圓錐形體積= 'hir 為h之1/3),水上升的速 度為3公分/秒,當水深為6公分時,其水量的變化率為何? 3. 求f(x)=2-3x--x之臨界值,增、減函數之區間,反曲點,並判斷其相對極大 或極小值,最後並繪出其圖形? 4. 判斷下列函數之增減函數的區間。 r'+4 (1) f(x)= (2) f(x) = 4x -x? 2x + 3 5. 一個底部為長方形的木箱(長為寬的2倍),體積為180m,其材料成本如 下,底部每m 為15元,箱頂蓋子每m'為10元,四周每m'為5元,求在總 成本最小下,箱子的長、寬、高應各為多少? 6.某廠商之需求函數為 D(x) = 100 -0.0lr,求(a)p=40之需求彈性(b)廠商最大收 益之生產量(c)若廠商想漲價5元,其總收益會增加還是減少? 7. 某馬戲團依據過去的資料知道若票價為200 元,則平均會有1000名觀眾進 場,若票價每增加10元將會流失 100名觀眾(每減少10 元會增加100 名觀 眾),此外,觀眾在戲團內平均會花費20元購買飲料或零食,請為該馬戲團決 定,在總收益為最大的情況下票價應為多少? 8.某廠商之需求函數為 D(x) = 1000 -0.02x,求(a) p=600 之需求彈性(b)廠商最大 收益之生產量(c)若原P=600 元,廠商想漲價30元,則其總收益會增加還是減 少? 9.台灣人口若屬於指數型成長,假設 2000年台灣人口數為2200 萬,2010 年人口數為2300 萬,請預測 2015 年台灣人口數約為多少(算至萬位數)? 10. 某種化學肥料於施作後,測量其單位面積土壤中的含量為100ppm,經過 5天後其含量減至80ppm,若天氣條件不變的情況下,請問經過20天後其 含量減至多少(算至整數)? 11. 解下列x(小數點第2位後四捨五入) (1) 4e4x = 14 (2) 2 + 4e in 4x = 8 (3) 4 In r2 = 16 12. f(x) = 3x-2x+1 求在re-13]時滿足 mean value theorem 時之C值。 不安全 - Ims.ntpu.edu.tw

待回答 回答數: 0
數學與統計 大學

大一公衛系微積分,求第二題解

公衛系 微積分期末考 (28/12/2018) 1. Use the Laplace transform to solve the differential equations. (1) j(t)+2y(t) = x(t), y(0)=1, x(t)=10, t20 (20) (2) Intravenous glucose is a treatment. Disposed at a fixed rate k grams per minute inputs into the blood, while blood glucose will be converted to other substances or moved to another place, at a rate proportional to the amount of glucose in the blood, the proportionality constant is a (a> 0), the initial amount of glucose in the blood is M. A. Find the variation in the amount of glucose in the blood (15) B. Determining the equilibrium, the amount of glucose in the blood. (5) = 2. SI Epidemic Model : The size of the population, n+1, remains fixed. Let i(t) be the number of infectives at time t, and let s(t) be the number of individuals who are susceptible. Given an initial number of infectives iO), we would like to know what will happen to i(t). SI Epidemic Model is described by the differential equation. di(t) = k·i(t).s(t) ......(5.1) dt i(t)+s(t)=n+1 i(0)=i, (1) Solve this differential equation of the SI Epidemic Model (5.1). (10 h) (2) What is the peak times t of the epidemic spread? (10) 3. Consider the Two-compartment physiological models and is shown in figure 1. C1 (t) represent the drug concentration in the first compartment and C2 (t) represents the drug concentration in the second compartment. Vi and V2 represent the compartment volume. Use the first order linear differential equation general solution to solve the C1 (t) (20 ) and use the Laplace transform to solve C2 (t). 【20 分). | 世」!()

待回答 回答數: 0