年級

科目

問題的種類

數學 高中

求解第5題

PROPERTIES OF CURVES (Chapter 13) 340 ACTIVITY Click on the icon to run a card game on curve properties. REVIEW SET 13A b y = x - 5x + 2 at (2,0) 1 Find the equation of the tangent to: a y=-222 at the point where x = -1 1-2x at (1, - d f(x) = (3x-1 at the point where 1 = e f(x) = ln(x-2) at the point where x = e. 2 Find the equation of the normal to: a y = 13.1 +4 at (4,4) y = 3e2: a Find a. b at the point where I = 1. 3 At the point where x = 0, the tangent to f(x) = 4x + px + q has equation y = 50-1 Find p and q. 4 Find all points on the curve y = 22 + 3.22 - 10x +3 where the gradient of the tangent is 2 5 The line through A(2, 4) and B(0,8) is a tangent to y= (x + 2)2 6 Find where the tangent to y = 228 +4x – 1 at (1,5) meets the curve again. a Find the equation of the normal to y = e2c at the point where x = a. b Hence find the equation of the normal to y = e21 which passes through the origin. 8 Find the coordinates of P and Q if (PQ) 5 y = at (1,5). va 7 YA is the tangent to P (1,5) 5 y = Q The tangent to y = x+/T = c at * = -3 cuts the axes at points A and B. Determine the area of triangle OAB. Find intervals where f(x) = -23 - 6x2 + 36x - 17 is: a increasing Consider the function f(x) = 2x3 - 3x2 - 360 +7. a Find and classify all stationary points. b decreasing b Find intervals where the function is increasing and decreasing. Describe the behaviour of the function as 200 and as X-→ -0. d Sketch the graph of y=f(x) showing the

待回答 回答數: 0
數學 高中

請問第3小題的第4個選項要怎麼看呢? 只能列出所有變化情形再寫成轉移矩陣嗎?

無子巨库 37,使用圓球和球炎作機率驗。球只有更白面色,袋中裝 有兩顆球,因此只有三種可能情况:把雙白球稱為狀態 1,一白一黑球稱為大难2:雙黑球排為狀排3。對這 炎球做如下操作:自袋中隨機移走一球後,再隨機移入 一顆白球或黑球(移入白球或黑球的機率相等),每次 操作可能會改變袋中球的狀。 (1)如果現在袋子內的球是一白一黑(即狀態2),請問經 過一次操作後,袋中會變成兩顆黑球(狀態)的機率是 1 1 2 多少?(單選0 (3) 3 2 3 (2)把從狀態,經過一次操作後會變成狀態的機率記為 P(例如上題的機率就是 Pag),由此構成一3x3 矩陣P。 針對矩陣P,下列選項有哪些是正確的?(多選) 1矩陣P满足= Pu 2P是轉移矩陣 (即每行之皆為1) 3DP的行列式值為正 4 4 Pu = P33 (3)把矩陣P連續自乘k次後的矩陣記為 P* 。已知矩陣 *中(i,j)位置的值,等於從狀態」經過人次操作後, 變成狀態的機率。針對多次操作,下列選項有哪些是 正確的?(多選) 0一白一黑(狀態2)開始,經過上次操作後,變成雙白 谈態1)的機率與變成雙黑(狀態3)的機率相等 2從雙白(狀態1)開始,經過上次操作後,回到雙白 (狀態1)的機率,比變成雙黑(狀態3)的機率大 在雙白(狀態 1)開始,經過人次操作後,回到雙白 (狀態)的機率,會隨著次數的增加而遞減 4不論從哪種狀態開始,經過人次操作後,變成任何一 1 種狀態的機率,會隨著大趨近於無窮大而趨近於 3 LOA 0口 * A斗口 下 1 1 1 16 1 列出所有變化情形 (2) pil =雙白球變雙白球(移出白球且移入白球)=xx= 2 2 1 1 Pal =雙白球變(移出白球且移入黑球)=lxs == 2 2 Pai = 雙白球變變黑球=0 1 Pig = 一白球一黑球獎雙白球(移出黑球且移入白球)=- 22 4 Pop =-白球一黑球變一白球一黑球 1 1 1 1 1 (移出白球又移入白球)+P(移出黑球又移入黑球)= x += = = 22 22 2 11 1 Pig = -白球一黑球變雙黑球(移出白球且移入黑球)=-x-=- 22 4 Ps = 雙黑球獎雙白球=0 1 1 Pas 雙黑球變一白球黑球(移出黑球且移入白球)=1; 1 1 Big 雙黑球變雙黑球(移出黑球且移入黑球)=1;== 表為轉移矩陣P= 2 - 1 0 24 1 1 1 2 2 2 1 1 0 4 2 As (100 (2) 204) (3)023 8927

待回答 回答數: 0
1/2