学年

質問の種類

数学 高校生

ガウスを不等式の中に入れてるのってどういう意味ですか?

基本 例題 23 数列の極限 (6) ・・・ はさみうちの原理 3 △ 45 ①①① (1) 実数x に対して[x]をm≦x< m+1 を満たす整数とする。 このとき, [102] lim 102m を求めよ。 (2) 数列{an) の第n項 α7 はn桁の正の整数とする。 このとき, 極限 [山梨大) logio an lim を求めよ。 72 [広島市大〕 基本21 指針 この問題も、極限が直接求めにくいので、はさみうちの原理を利用する。 (1) [x] をはさむ形を作る。 x]はガウス記号であり (「チャート式基礎からの数学 I+A」 p.121 参照) [x]≦x< [x]+1 が成り立つ。 これから (2) α は n桁の正の整数 10" 'Man<10" (数学ⅡI) (1)任意自然数nに対して, [102] 10°"z<[10%"z]+1 102-1< [102]≦102 1 [102] < 10²n 102n x-1<[x]≦x <[x]≦x<[x]+1 2章 ③数列の極限 2限 [102] をはさむ形。 から 解答 よって 1 limπ 201 102πであるから [102] lim π はさみうちの原理。 102n 12-00 (2) α は n桁の正の整数であるから 各辺の常用対数をとると 10"-1≦an<10" n-1≦10g10an<n 10g1010=n よって 1 log10 an <1 n n lim (1-1) =1であるから lim log10 an 1 はさみうちの原理。 12-00 n 7→80 注注意 はさみうちの原理を誤って使用した記述例 例えば、前ページの例題22の解答で, A 以降を次のように書くと正しくない答案となる。 0<<6 Aから n² 0<lim- <lim → 2 6 n =0 よって lim n2 =0 2 [説明] はさみうちの原理は 818 an≦cn≦bn のとき lima= limb = αならば limc=α →80 n00 これは, 「acn≦bn が成り立つとき, 極限lima, limb が存在し, それらがαで一致する ならば,{c}についても極限limc が存在し, それはαに一致する」という意味である。 72700 72100 において, 存在がまだ確認できていない極限lim を有限な値として存 上の答案では, 在するように書いてしまっているところが正しくない。 正しくは、 前ページの解答のA, B のような流れで書く必要がある。 n² 11-00271 練習 実数 α に対してαを超えない最大の整数を [α] と書く。 [ ]をガウス記号という。 23 (1) 自然数の桁数kをガウス記号を用いて表すと, k =[[ ] である。 (2)自然数nに対して3”の桁数を km で表すと, lim- kn 12-00 n "である。 [慶応大]

回答募集中 回答数: 0
数学 高校生

写真の問題の赤線部についてですが、なぜn≧1と書く必要があるのでしょうか? その上の行でΣとCをすでに使っていますが、ΣとCのnの部分は定義から、n≧1だから、赤線部の前にn≧1という条件はすでに考慮してるのではないのでしょうか?解説おねがいします。

基礎問 P 44 はさみうちの原理(I) 次の問いに答えよ. (1) すべての自然数nに対して,2"> n を示せ. AOAO k-1 (2) 数列の和 S. = 2 (1) anで表せ△〇〇〇 k=1 (3) lim Sm を求めよ. △△△△ n→∞ |精講 (1) 考え方は2つあります。 I. (整数)” を整式につなげたいとき, 2項定理を考えます. PROCE (数学ⅡI・B4 ⅡI. 自然数に関する命題の証明は帰納法 (数学ⅡI・B 136 Fet (2) Σ計算では重要なタイプです. (数学ⅡB 120 S=Σ(kの1次式) k+c (r≠1) は S-S を計算します. (3) 極限が直接求めにくいとき, 「はさみうちの原理」という考え方を用います. bn≦an≦en のとき limb=limcn = α ならば liman=α n→ 00 n→∞ n→∞ この考え方を使う問題は,ほとんどの場合,設問の文章にある特徴がありま す. (ポイント) どういう意味? 解答 (1) (解I)(2項定理を使って示す方法) n (x+1)=2nCkck に x=1 を代入すると k=0 2"=nCo+nC1+nC2+..+nCn ¹) n=1 F²³5, 2²nCo+nC₁=1+n>newhere 2">n ( 解ⅡI) (数学的帰納法を使って示す方法 ) 2"> n (i) n=1のとき 左辺=2,右辺=1 だから, ①は成りたつ

回答募集中 回答数: 0
数学 高校生

(3)のn大なりイコール2とありますがこれはなぜですか?

152 00000 重要 例題 95 漸化式と極限(はさみうち) [類 神戸大] 0<a<3, an+1=1+√1+an (n=1,2, 3, ......) によって定められる数列 {an} について,次の (1) (2) (3) を示せ。 (2) 3-an+1<. (1) 0<an<3 ART O SOLUTION 求めにくい極限 CHART はさみうちの原理を利用薫さら 漸化式を変形して, 一般項an をnの式で表すのは難しい。 各小問を次の方針で 考えてみよう。 (1) すべての自然数nについての成立を示すから, 数学的帰納法を利用。 0<a<3 を仮定する。 (2) 漸化式を用いて an+1 を an で表し, (1) の結果を利用する。 (3) (1), (2) で示した不等式を利用し, はさみうちの原理を使って, 数列 {3-an ..... の極限を求める。 ・・・・・!!! はさみうちの原理 すべての自然数nについて ann≦b のとき liman=limbn=α ならば limC=α →∞ 11-00 解答 (1) 0<a<3 ①とする。 [1] n=1のとき, 条件から0<a<3 が成り立つ。 [2] n=kのとき, ① が成り立つと仮定すると 0<a<3 n=k+1 のとき <(3—an) 3-ax+1=3-(1+√1+ax)=2√1+ak ここで, 0<a<3 の仮定から 1 <1+an<4 ゆえに 1 <√1+a2 よって, 2-√1+αk >0 であるから 3-4k+1 0 すなわち k+1 <3 また,漸化式の形から明らかに 0<ak+1 (3) liman=3 ゆえに, 0 <ak+1 <3 となり, n=k+1 のときにも ① は成 り立つ。 [1], [2] から すべての自然数nに対して①が成り立つ。 ■3-an+1=3-(1+√1+an)=2√1+an (2−√1+an)(2+√1+an) _4-(1+an)_²1 2+√1+an 2+√1+an -(3-a) ( 141 基本事項 3 基本88 数学的帰納法で示す。 ◆n=k+1 のときも 0 < ak+1 <3 すなわち 0 < akt かつ ak+1 <3 が成り立つことを示す。 漸化式から。 分子を有理化。 3-An ここで(1)の結 2+√1+a, </ 3-an+1< <1/13(3-4) (2)の結果から、n=2のとき ② ③ から よって ここで, lim a<3-a<3(3-a-1<3) (3-2)+LE? 0<3-a₂ < (3) m (2) (3- 100 < (1) ²(3-as) がって n-1 liman=3 11-00 lim (3-an)=0 121-00 >3であるから (3-as) 72-00 2+√ltan (3-α) = 0 であるから a>b>0のとき 1 1</ -(3-On) 3 (3-0) 3-an-1 小さいから成り立つ</a 仮定すると, liman+1= α であることから, α=1+√1+α が成り立つ。 |これから,α-1=√1+α であり,この式の両辺を2乗して a²-3α=0 整理すると ゆえに,α(α-3)=0,α> 0 から, α=3であると予想でき る。これを.149のズームUPのようにグラフで確認して みると、 右の図のように極限値が3となることが確かめら </1/3 (3-an-²) はさみうちの原理 INFORMATION 複雑な漸化式で定められた数列の極限 /an+1=1+√1+an, 0<a<3 で定義される数列{an} について, lima =α であると 72-00 y 3 y=1+√1+x 21 153 10 a₁ y=x Az az 3 れる。 なお,この無理式で与えられた漸化式から一般項 α を求め, 直接 lima =3である ことを示すことは難しいので, lim (3-α)=0を示そうとして (2) の誘導の不等式が 与えられているのである。 2240 4章 10 数列の極限 PRACTICE・・・ 95 ④ u=a (0<a<1), an+1=-120'12/24%(n=1,2,3,..) によって定められる数 列{an} について,次の (1), (2) を示せ。 また, (3) を求めよ。 (1) 0<an<1 (2) r=a2のとき 1-ty≦r (1-an) (n=1, 2, 3, ......) と演習) [鳥取大) ヨチャート の紹介 本質を 全に定 に問 関大 参考書 題学信

回答募集中 回答数: 0
1/5