学年

質問の種類

物理 高校生

p=ρhg p'=p。+ρhg この2つの式の違いを教えていただきたいです🙇‍♂️

②気体の圧力 気体は空間を飛んでいるきわめて多数の分子からなる (59) この多数の分子が壁に次々と衝突することによって, 気体の圧 A 力が生じる。 気体の圧力のうち, 特に大気による圧力を大気圧という。 atmospheric pressure 大気圧によってはたらく力を実感してみよう。 実験 6 ロー 大気圧 図59 気体分子の運動と圧力 ③液体の圧力水による圧力を水圧 という。図60② のように,透明 water pressure な筒の両端に薄いゴム膜を張って水中に入れると,ゴム膜のへこみぐあ いでその場所での水圧の大小が調べられる。この実験や同図⑥の実験よ り,次のことがわかる。 水圧 実験 6 大気圧 中央に取っ手のついた正方形のゴム板(一辺30cm 程度)を水平でなめらかな床の上に置く。これを 持ち上げることはできるだろうか? ①同じ深さでは,水圧はどの方向にも同じ大きさである ②深くなるほど水圧は大きい 高さん [m]の円筒容器に満たされた水(密度を p[kg/m²] とする)が, 容器の底面に及ぼす水圧を p 〔Pa] とすると,次の式が成りたつ。 ① ゴム板の表面が受けている力の大きさを計 算により求めてみよう。 p = phg 1 (59) ptPa 水戸 (water pressure) p[kg/m³) 水の密度 h〔m〕 水深 g [m/s2] 重力加速度 (gravitational acceleration) の大きさ 水深 h 水の密度 底面積 S KEP これは,水圧が円筒の断面積によらず, 深さに比例することを表して いる。 なお,水面での大気圧(po [Pa] とする) を考えると, 水深ん [m] で物体

未解決 回答数: 2
物理 大学生・専門学校生・社会人

問2の(3)(4)を教えてください

問2. ばね定数 k [N /m] (k > 0) の軽いばねがある。なめらかな水平面上でこ 自然長 のばねの左端を固定し、右端に質量 m kg] の物体を取り付けた。次に、 手で mm 物体を引っ張ってばねを自然長より cm 伸ばしてから静かに手を放した。図 0 に定義された座標軸に基づいて、その後の物体の運動について、以下の間に答 えよ。ただし,時刻 ts]での物体の位置を (t) [m] とし、ばねが自然長のときの物体の位置を原点とする。 (1) Find the restoring force F, [N] that the spring tries to return when the object is displaced by z m from its natural length. (2 points) d'z as its acceleration. dt? (2 points) (2) Find the equation of motion of the object, using the notation of (3) Find the general solution of the equation of motion of the object. (3 points) (4) Find the solution that meets the initial conditions described in the problem. Here, the moment when the hand is released is set as time t==0s. (3 points) 問3.問2では摩擦などの抵抗力がない理想的な単振動を扱ったが、実際には抵抗力が存在する。 抵抗力は速度 dt に比例することが多く、この比例定数をc[N.s/m] (c> 0) とおくと、 運動方程式は教科書 P.66 の(2.40)式として表 される。この方程式の一般解は、 教科書 P.52に示す「定数係数の2階線形同次微分方程式の一般解」として表され、 教科書 P.66 の下段3行に示すような解 a) c)となる。これらの解の導出課程を、 以下の手順に従って示せ。 d。 da. (1)(2.40)式 m = ーkc - c dt? の右辺において、c dt の項の符号がマイナスである理由を考察せよ。 dt (2点)

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

問2の(3)(4)を教えてください

問2. ばね定数 k [N /m] (k > 0) の軽いばねがある。なめらかな水平面上でこ 自然長 のばねの左端を固定し、右端に質量 m kg] の物体を取り付けた。次に、 手で mm 物体を引っ張ってばねを自然長より cm 伸ばしてから静かに手を放した。図 0 に定義された座標軸に基づいて、その後の物体の運動について、以下の間に答 えよ。ただし,時刻 ts]での物体の位置を (t) [m] とし、ばねが自然長のときの物体の位置を原点とする。 (1) Find the restoring force F, [N] that the spring tries to return when the object is displaced by z m from its natural length. (2 points) d'z as its acceleration. dt? (2 points) (2) Find the equation of motion of the object, using the notation of (3) Find the general solution of the equation of motion of the object. (3 points) (4) Find the solution that meets the initial conditions described in the problem. Here, the moment when the hand is released is set as time t==0s. (3 points) 問3.問2では摩擦などの抵抗力がない理想的な単振動を扱ったが、実際には抵抗力が存在する。 抵抗力は速度 dt に比例することが多く、この比例定数をc[N.s/m] (c> 0) とおくと、 運動方程式は教科書 P.66 の(2.40)式として表 される。この方程式の一般解は、 教科書 P.52に示す「定数係数の2階線形同次微分方程式の一般解」として表され、 教科書 P.66 の下段3行に示すような解 a) c)となる。これらの解の導出課程を、 以下の手順に従って示せ。 d。 da. (1)(2.40)式 m = ーkc - c dt? の右辺において、c dt の項の符号がマイナスである理由を考察せよ。 dt (2点)

回答募集中 回答数: 0
1/2