学年

質問の種類

数学 高校生

(3)で、解と係数との関係より、α×α²=−2pまではだせたんでふが、その先の「すなわち」からなぜそうなるのかがわかりません。

#4432! A B 6 GO 口 完答への 道のり よって、方程式①の左辺を因数分解すると (x-1)(x-2x-2p) (2)別) (1)より -2px+2p -2px+2p. A 整式の割り算をして商を求めることができた。 ・ 整式の因数分解ができた。 x²-3x²+2(1-p)x+2p=x²-3x²+2x-2p(x-1) = x(x-1)(x-2)-2p(x-1) =(x-1)(x(x-2)-2p) =(x-1) (x²-2x-2p) (-2)-4-1-(-2p) ≥ 0 [a+a²=2 0 (3) 方程式①の解がすべて実数であるとき (2) より 2次方程式 x-2x2p=0 は実数解をもつ。したがって, 方程式②の判別式をDとすると, D≧0と なるので aa²=-2p すなわち 4+800 p2-/1/20 x=1以外の2つの解のうち一方が他方の平方となるとき, 方程式 ② の異な る 2解はαα² とおけるから, 解と係数の関係により [(a+2)(a-1)=0 | ₁ = - 2²³ (x-1)(x-2x-2p) 11 = / 2 (x-1)(x²-2x-2p) ③より α = -2,-1 α=1のとき,α=1 となり; 方程式 ① は3重解をもつから不適。 α=-2のとき, α = 4 となり, 方程式 ① は異なる3つの実数解をもつ。 よって, α=-2 また α=-2 を①に代入して p=4 23 B -- - 41 - 最低次数の文字で整理して因数 分解する解法である。 2次方程式 ax+bx+c=0…. A の判別式をDとすると 8 (1) 2-1, p=d 方程式が実数解をもつ IDNO ただし,D=62-4ac で, b=26′ = のときは 1/14-62-ac を用いても よい。 <解と係数の関係 2次方程式 ax2+bx+c=0 の つの解をα, βとすると a+B=- =-b aβ= a' ²

回答募集中 回答数: 0
数学 高校生

青チャート1Aの高次方程式です。四角で囲ったところが分かりません。解説お願いいたします。

第65 3次方程式が2重解をもつ条件 例題 105 水方屋式で+(a-2)x-4a=0 が2重解をもつように, 実数の定数aの値を定 O((類東北学院大] めよ。 捜素数とした。そ っている(このこ 基本 63 方程式(x-3)(x+2)=0 の解x=3を,この方程式の 2重解 という。 また, 新武 方程式(x+2)°(x-2)=0 の解x==2を,この方程式の 3重解 という。 方程式が(x-a)(x+ px+q)=0 と分解されたなら,2重解をもつ条件は ロ%3Dx [1] x°+px+q=0が重解をもち,その重解は xキα 121 x+ px+q=0がαとa以外の解をもつ。 →2重解は x=α 2章 であるが,一方の条件を見落とすことがあるので,注意が必要である。 なお,[1] は,2次方程式の重解条件と似ているが, 重解が xキαである(x=aが3重解で 11 女の和·差·積、 三た複素数である 複素数を係数と 式について, 割 等式が成り立つ。 高 はない)ことを必ず確認するように。 の 次 方 程 式 えられた3次方程式の左辺をa について整理すると 次数が最低のaについて 整理する。また P(x)=x°+(a-2)x-4a とすると P(2)=0 n次式。 さ立 ース) 8 (x-4)a+x°-2x=0 (x+2)(x-2)a+x°(x-2)=0 (x-2)(x°+(x+2)a}=0 (x-2)(x+ax+2a)=0 x-2=0 またはx°+ax+2a=0 ー よって, P(x) はx-2を因 数にもつ。 これを利用して因数分解し 天爪 p-giも よって てもよい。一 0-3+88- この3次方程式が2重解をもつのは,次の[1] または [2] の場 に対し 合である。 D+ax+2a=0 がxキ2の重解をもつ。 利別式をDとすると a キ2 2-1 (2次方程式 D=0 かつ めてみよ。 Ax?+Bx+C=0 の重解は D=d-4-1-2a=a(a-8)であり, D=0とするとa=0, 8 (-)B】 (1-)(1 2A)(1-) X=ー a ここで, -+2 から aキー4 2-1 =0, 8はaキー4を満たす。 |+ax+2a=0 の解の1つが2で,他の解が2でない。 2が解であるための条件は これを解いて このとき,方程式は したがって 8-キ1-0 )-ネー= [2] 他の解が2でない,とい う条件を次のように考えても よい。 に分け+ 7 他の解を8とすると, 解と 係数の関係から 28=2a Bキ2から aキ2 て 22+a-2+2a=0 10 a=-1 (x-2)(x?-x-2)=0 (x-2)(x+1)=0 等式の花 えに,x=2は2重解である。 以上から 0が得しれる 星であ a=-1, 0, 8 aを実数の定数とする。3次方程式x°+(a+1)x-a=0 ( 50のが2重解をもつように, aの値を定めよ。 …… 1 について い。 11が異なる3つの実数解をもつように, aの値の範囲を定めよ。

回答募集中 回答数: 0