学年

質問の種類

数学 中学生

規則性の問題です。 答えは(n-1)²×6-(n-2)²×6 =12n-18です。 式をどうやって組み立てたか等教えて頂けると嬉しいです!

先生「1辺の長さが1cmの小さい立 方体をたくさん用意して,これ らをすき間なく並べたものを積 み重ねて、大きい立方体をつく ります。 図1、図2図3は, それぞれ,大きい立方体の1辺 の長さが2cm3cm4cmの 場合を示しています。 (5)次は,先生とAさんの会話です。 これを読んで,下の①,②に答えなさい。 273 CAJARK 80 (ii) 図1 -(iii) ( 図28コ 図3 このとき、つくった大きい立方体を外側から見て,小さい立方体の面が何面見えるか を考えます。ただし、大きい立方体の6つの面はすべて外側から見えるものとします。 すると、図1の場合、8個の小さい立方体は,すべて外側から3面が見えます。図2の場 合,27個の小さい立方体のうち、(i)のように3面が見えるものは8個, (i)のように2面 が見えるものは12個あります。 では, (i)のように1面が見えるものは何個あるか数えて みましょう。また、外側からまったく面が見えないものは何個あるか求めてみましょう。」 Aさん「図2の場合, (ii)のように1面が見えるものを数えると6個あり,外側からまったく面が 見えないものは1個と求められます。」 01 先生「そうですね。次の表は,大きい立方体の1辺の長さと、外側から見える面が3面~1面 および外側からまったく面が見えない小さい立方体の個数との関係を整理したもので す。 大きい立方体の1辺の長さが6cmの場合はどうなるか考えてみましょう。」 大きい立方体の1辺の長さ(cm) 外側から3面が見える小さい立方体の個数(個) 外側から2面が見える小さい立方体の個数(個) 外側から1面が見える小さい立方体の個数(個) 2 3 4 56.. 800 |外側からまったく面が見えない小さい立方体の個数(個) 0 小さい立方体の個数の合計(個) -8|2 8 8 r 12 24 3648 62454 I 8 2764 8 27 64 125 Aさん「この表から考えると,大きい立方体の1辺の長さが6cmの場合、外側から3面が見え る小さい立方体は8個外側から2面が見える小さい立方体は 個外側からまっ たく面が見えない小さい立方体は64個です。 ここまでは、大きい立方体の1辺の長さ と小さい立方体の個数との関係がわかりました。ただ、外側から1面が見える小さい立 りました。ただ、 方体についてはわかりません。」 先生「外側から1面が見える小さい立方体は、 図2の (ii) のように, 大きい立方体の頂点や辺を 含まない位置にありますから、まず大きい立方体の1つの面に,外側から1面が見える 小さい立方体が何個あるのかを考え、その個数に大きい立方体の面の数をかけるとよい 「でしょう。」 0813 Aさん「なるほど。 外側から1面が見える小さい立方体は, 16×6で, 96個ですね。」 ×66 先生 「正解です。 よくできました。」

回答募集中 回答数: 0
数学 高校生

高校数学対数です。(2)の解答で、なぜ不等式は〜のところでlogをとって真数だけの不等式にしないのですか?また、(3)は全然分かりません。解説お願いします!

解答 61 W 基本例 (1) logo.3(2-x)≧logo.3(x+14) 00000 295 例題 184 対数不等式の解法 次の不等式を解け。 (2) log2(x-2)<1+log/(x-4) (2)神戸薬大, (3) 福島大] 基本 182 183 重要 185、 (3)(10gzx-10g24x>0 指針 対数に変数を含む不等式 (対数不等式) も, 方程式と同じ方針で進める。 まず,真数>0 と,(底に文字があれば)底>0,底≠1の条件を確認し,変形して 10gaA<10gaBなどの形を導く。 しかし、その後は a>1のとき logaA <loga B⇔A<B 大小一致 0<a<1のとき logaA <logaB⇔A>B 大小反対 のように、底αと1の大小によって、不等号の向きが変わることに要注意。 (3)10gzxについての2次不等式とみて解く。 (1)真数は正であるから, 2-x>0 かつ3x+14>0より 14 <x<2 3 ① 底 0.3は1より小さいから, 不等式より 2-x≦3x+140<a<1のとき よって x-3 ② fools+ ①,②の共通範囲を求めて -3≦x<2 (2) 真数は正であるから, x-2>0かつx-4>0より> x>4 1=log22, log/(x-4)=-log2(x-4) であるから, 不等式は log2(x-2)<10g22-10gz(x-4) ゆえに log2(x-2)+10g2(x-4)<10gz2 よって log2(x-2)(x-4)<log22 底2は1より大きいから (x-2)(x-4)<2 loga A≤loga B ⇔A≧B (不等号の向きが変わる。) 2 これから x-2<- x-4 が得られるが, 煩雑にな るので,xを含む項を左 1辺に移する。 5 5章 3対数関数 ゆえに x2-6x+6<0 よって3-√3<x<3+√3 x-6x+6=0 を解くと x>4との共通範囲を求めて (3) 真数は正であるから 4<x<3+√3 x>0 ① log24x=2+10gzxであるから,不等式は x=3±√3 また√3+3>1+3=4 (log2x)-log2x-2>0 ゆえに (logzx+1)(10gzx-2)>0 よって logzx <-1,2<logzx したがって logax<loga, log24<log2x 底2は1より大きいことと,①から0<x<12/24<x 10g2x=t とおくと t2-t-2>0 よって (t+1)(t-2)>0 練習 次の不等式を解け。 ②184 (3-x)≤0 (2) logs(x-1)+logs (x+2)≦2 p.301 EX 117

回答募集中 回答数: 0
物理 高校生

22番の問題が分かりません…できれは詳しく説明してもらいたいです!!お願いします🙇‍♀️

3 加速度と等加速度直線運動 月 加速度 単位時間当たりの速度の変化。 加速度は、 速度と同じように大きさと向きをもつ。 T 運動。 初速度か [m/s], 加速度α [m/s]の等加速 6 等加速度直線運動 一直線上を一定の加速度で進む 加速度の単位 1秒間に速度が1m/s の割合で変化す る場合の加速度を基準にとり、 1m/s とする。 平均の加速度 時間 Jr[s] の間の速度の変化が [m/s] のとき、 平均の加速度(m/s7は 線運動で, t[s] 後の 速度を [m/s] 変 位を [m] とすると, 次の式が成りたつ。 初め [] 後 a 0 変位 速度が 速度の変化 時間 dv at v=vo+at at 【例10 等加速 30m/sの (1) 2.0秒後の物体 (2) 2.0秒後までに 解物体 [portat] *D 30+1.5× 面積 12/24 af 瞬間の加速度 平均の加速度の式で、 をきわめて 短くとると瞬間の加速度となる。 x=vot+ afa 1 Vo 面積 Bod v2-v²=2ax 時間 23. 等加速 体が、一定の □21. 平均の加速度 次の各場合について、 物体の平均の加速度はどの 向きに何m/s"か。 21. (1) 4.0 秒後の (1) (1) 一直線上を正の向きに 3.0m/sの速度で進む物体が, 4.0秒後に正の 向きに9.0m/sの速度になったとき。 (2) (2) 4.0秒後 (2) 一直線上を正の向きに8.0m/sの速度で進む物体が, 6.0 秒後に負の 向きに4.0m/sの速度になったとき。 24. た後、初 で通過し □22. 加速度 物体が静止の状態から動き始めて一直線上の運 動を続けた。 その0.10 秒後, 0.20 秒後, 0.30 秒後, ...... の到達 距離を測定して表にまとめた結果が下の表である。 22. (1) 表に記入 速さ [m/s] 3.0 時間(s) 0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 距離 (m) 0 0.02 0.08 0.18 0.32 0.50 0.72 0.98 2.5 2.0 平均の速さ(m/s) (2)1.5 1.0 (1) 表の値から各 0.10 秒間の平均の速さを求め, 表の中に書き 入れよ。 0.5 0 (2) 物体の運動のv-t図をかけ。 (3) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 時間 t [s] 25. 斜面 は正 た (3) 物体の加速度の大きさは何m/s2 か。 (2) (1)で求めた平均の速さを、その時間 の中央の時刻での速さと考える。例え ば, 0.10~0.20 秒での平均の速さは, 時刻 0.15 秒での速さとみなす。 し (1)

回答募集中 回答数: 0
1/15