学年

質問の種類

数学 中学生

【大至急 一次関数の利用】(2)の②がわかりません。 詳しい解説お願いします🙇🏻‍♀️

3 A町とD町の間を2台のバス, gが往復しています。 図1のように,A町バス停とD 町バス停の間に,順にB町, C町のバス停があり, A町バス停から8000m離れたところ B町バス停があり、その間にE地点があります。 B町バス停から7000m離れたところ C町バス停があり,さらにC町バス停から5000m離れたところにD町バス停がありま す。ただし,A町,B町,C町, D町のバス停とE地点は,一直線の道沿いにあり,2 台のバスは,それぞれこの道を移動することとします。後の(1),(2)の各問いに答えな さい。 図 1 am 8:4 A 町 84~2 E地点 B町 8000m CHT DHJ -7000m 5000m (1)バス』はA町バス停を午前8時に出発しました。 A町バス停からxm離れたところにあ るE地点までは分速600mで進み,E地点を通過すると同時に分速500mで進み, B町バス 停には午前8時14分に到着しました。 xの値を求めなさい。 14 600×14= 2400 (2) バスカはB町バス停に午前8時14分から何分間か停車し, その後一定の速さでC町バ ス停に進み, C町バス停でも何分間か停車しました。 図2は、バスの移動のようすに ついて,午前8時x分のA町バス停からの距離をymとして,xとyの関係をグラフに表 したものです。 ただし,グラフではバスがB町バス停に着いてからC町バス停を出発 するまでの移動のようすを示しています。 後の①、②の各問いに答えなさい。 図2 (m)y 20000 18000 16000 14000 12000 10000 8000 6000 4000 2000 0 10 20 x 30 30 分 (分)

回答募集中 回答数: 0
数学 中学生

二次関数の変域の問題です。1.2.3について詳しく解説してくれると嬉しいです。

の変域 の変域 ン。 (2) とき) なるこ つうち, 負から正に変わっているので、yの変域は0以上または0以下となる。 また by 18よりyの変域は0以上で,a>0 とわかる。よって,b=0 一方、xの変域の両端の値のうち、絶対値の大きなx=3がy=18と対応するので,y=arにそれ ぞれ代入し, a=2と求まる。 答 a=2,b=0 中3で習う分野 問題 (解 mnを整数とする。関数y=axについて,xの変域がm≦x≦nのとき,yの変 0≦y2である。 m, nの値の組は全部で何通りありますか。 y=1/2xにおいて,yの値が2となるときのxの値は,y=2 を代入して, 2=1/2x2 よって、x=±2 (都立新宿高) 一方,比例定数は正で,yの変域が0以上ということを考えると,mは0以下で絶対値が2以下の 整数,nは0以上で絶対値が2以下の整数,さらにm,nのどちらか一方の値は必ず絶対値が2と なることがわかる。 EE, (m, n)=(-2, 0), (-2, 1), (-2, 2), (-1, 2), (0, 2) 5通り m n 入試問題にチャレンジ! 解答は, 別冊 p.47 2乗に比例する関数 Q問題 1 n を2以下の整数とする。 関数 y=xのxの変域がn≦x<3のとき,yの変域が 0≦y<9 となるnの値をすべて求めなさい。 ( 都立日比谷高) 9=9 12=0 m=0 1 問題2 関数 y=-- xについて、xの変域がa≦x≦a+5であるとき、yの変域が -4≦y0 となるようなαの値をすべて求めなさい。 ( 青山学院高 ) かる。 問題 3 α bを定数とする。 ただし, αは負の数とする。 3 関数 y=ax と1次関数y=2x+b において,xの変域が-1≦x≦3のとき,2つの関数の yの変域が一致した。 a, b の値をそれぞれ求めなさい。 (都立国分寺高) 101

回答募集中 回答数: 0
数学 高校生

数IAの演習問題のテストが全く分かりません (2)から苦戦しています なぜy=(x-160)(400-x)-6000になるのか解説よろしくお願いします🙇!!

5 花子さんと太郎さんのクラスでは,文化祭でたこ焼き店を出店することになった。 2人は 1皿あたりの価格をいくらにするかを検討している。 次の表は、過去の文化祭でのたこ焼 き店の売り上げデータから, 1皿あたりの価格と売り上げの関係をまとめたものである。 1皿あたりの価格 (円) 200 250 300 売り上げ数 (皿) 200 150 100 6 b ラ下 以下 b= (1) (1) まず, 2人は,上の表から 1皿あたりの価格が50円上がると売り上げ数が50皿減 ると考えて、売り上げ数が1皿あたりの価格の1次関数で表されると仮定した。このと き, 1皿あたりの価格をx円とおくと, 売り上げ数は アイウ -x と表される。 ① (2)次に、2人は、利益の求め方について考えた。 花子: 利益は,売り上げ金額から必要な経費を引けば求められるよ。 太郎 : 売り上げ金額は、1皿あたりの価格と売り上げの積で求まるね。 花子 : 必要な経費は,たこ焼き用器具の賃貸料と材料費の合計だね。 材料費は、売り上げ数と1皿あたりの材料費の積になるね。 2人は,次の3つの条件のもとで, 1皿あたりの価格を用いて利益を表すことにした。 (条件1) 1皿あたりの価格が円のときの売り上げ数として ①を用いる。 (条件2) 材料は、 ①により得られる売り上げ数に必要な分量だけ仕入れる。 (条件3) 1皿あたりの材料費は160円である。 たこ焼き用器具の賃貸料は6000円で ある。 材料費とたこ焼き用器具の賃貸料以外の経費はない。 利益を円とおく。yをxの式で表すと y=-x+エオカ x キx10000 である。 (3)太郎さんは利益を最大にしたいと考えた。 ②を用いて考えると, 利益が最大になる のは1皿あたりの価格がクケコ 円のときであり,そのときの利益はサシスセ円 である。 (4) 花子さんは,利益を7500円以上となるようにしつつ,できるだけ安い価格で提供し たいと考えた。 ②を用いて考えると, 利益が7500円以上となる1皿あたりの価格のう ち、最も安い価格はソタチ 円となる。 (2)

回答募集中 回答数: 0
1/41