学年

質問の種類

数学 高校生

1と2でcが異なるのがよくわかりません。 どうやって考えればいいんですか?

○○ 基本 71 日本例題 を求めよ。 の共有点と連立1次方程式の解 立方程式 ax+3y-1=0, 3x-2y+c=0 が,次のようになるための条件 ただ1組の解をもつ 00000 (2) 解をもたない (3) 無数の解をもつ p.121 基本事項 GHART & SOLUTION 2直線が 川 1点で交わる 2直線A, B の共有点の座標 ⇔ (共有点は1つ) 連立方程式が 連立方程式 A, B の解 125 が一致 よい。 [2] 平行で一致しない (共有点はない) ⇔ ⇔ [3] 一致する(共有点は直線上の点全体) 答 ax+3y-1=0 から 3x-2y+c=0 から y=-- a 1 x+ 3 3 y=1/2x+1/2 1組の解をもつ 解をもたない 無数の解をもつ (1) 連立方程式 ① ② がただ1組の解をもつための条件は, 2直線 ①② が1点で交わる, すなわち平行でないことで a 3 が -1 ある。 0 よって 3 2 9 ゆえに a- 2 cは任意の実数 (2)連立方程式 ①,②が解をもたないための条件は, 2直線 ① ②が平行で一致しないことである。 inf 2直線 ax+by+c=0, azx+bzy+cz=0 が | 平行であるための条件は ab-ab=0 3章 11 である(p.120基本事項3) から (1) は b2-azb≠0 より求めてもよい。 なお, a2=0,620, 20 のとき 2直線が 一致するための条件は a_bicy a2 b₂ C2 直線 である。 (3)は、この式から 求めてもよい。 0 よって a = 3 1 C ・キ 3 2'3 2 9 ゆえに a= 2 3

回答募集中 回答数: 0
数学 高校生

最後の注の部分の比例式が成り立つのは何故なのか分からないので、 解説して欲しいです。 よろしくお願いします

9 連立1次方程式 / 連立方程式の解の存在条件 [(a−2)x+4ay=−1 の定数として、次のエリについての連立方程式を考える。ょー (34+1)y=a ] のとき, この連立方程式の解は存在しない. (麗澤大) [] のとき, この連立方程式の解は無数に存在する 等式の条件の扱い方 等式の条件式が1個与えられたら,それを使ってどれか1文字を消去するの が原則的な手法である.x,yの連立1次方程式の場合,例えば一方の式からxをyで表して、他方の式 に代入するとyの1次方程式に帰着できる. xの方程式x=gの解 p=0のときx=2, p=0 かつ g=0のときxは任意, p=0 かつq≠0 のとき解なし Þ 解答 100>A 70 A<[X] @ 1 (a−2)x+4ay=-1 >x> [<]X[** (2) x-(3a+1)y=a 3 であり、 ②により, x=(3a+1)y+a ③を①に代入して, (a−2){(3a+1)y+a}+4ay=−1 .. (3a²-a-2)y=-a²+2a-1 ④ (a-1)(3a+2)y=-(a-1)2 の方程式④の解y に対して, ③ によりxがただ1つ定まり, 連立方程式 ①か つ②の解(x,y) がただ1つ定まる. よって, 連立方程式の解が 「存在しない・無数に存在する」 条件は、④の解が 「存在しない・無数に存在する」ことと同値である. よって, ④ から のとき解なし. 3 (a-1)(3a+2)=0かつ-(α-1)20, つまり α=- (a-1)(3a+2)=0かつ(a-1)2=0, つまり α=1のとき解は無数 . 注連立1次方程式の解の存在条件を座標平面で考える方法もある. |ax+by=e... Ⓒ ((a, b)=(0, 0) lcx+dy=f・イ (c, d)=(0, 0) 一般に, を考えてみよう.xy平面上でアイは直線を表す. アとイが交われば,その交 点の座標が連立方程式の解である. したがって, ●解が存在しないということは,直線アとイが共有点をもたない,つまりアとイ が平行で一致しないことと同値. ●解が無数に存在するということは,直線アとイが一致することと同値. —ということになる. 直線アとイが平行である (一致も含む) ための条件は、 a:b=c:d(← ad-bc=0) a TRAN a= a= 方程式の解が存在する・存在しな いをとらえるには, 実際に求めよ うと考えればよい.y を求めるな ら ④式を導くところ. 0-1,84502121 3012120 T I+=2(1-1) +3021 本問の場合、次のようになる. ①と②が平行 (一致も含む) であ あるための条件は,十 (a−2): 4a=1:{-(3a+1)} (a-2) (3a+1)-4a=0 ∴.3a²-a-2=0 2 a=- 1 XJIK 3' これらのときの ① ② を求め, 致するかどうか調べる (α=1の ときのみ一致する).

回答募集中 回答数: 0
1/2