学年

質問の種類

数学 高校生

数IIの軌跡と方程式の問題です 「点Qは①上の点であるから」のところ は、どこらからそれが分かるのかと 「点Pと点Qが一致するとき」となぜPとQは対称なのに 一致する場合を考えるのかが分かりません 教えてください🙏

本 例題 100 直線に関する対称移動 000 直線x+y=1 に関して点Qと対称な点をPとする。 点Qが直 x-2y+8=0 上を働くとき、点Pは直線 上を動く。 6 基本 CHART & SOLUTION 対称 直線 に関して PQが対称 [1] 直線 PQ が に垂直 [2] 線分 PQ の中点が上にある 点Qが直線x-2y+8=0 上を動くときの, 直線l:x+y=1 に関して点Qと対称な点 Pの軌跡、と考える。つまり, Q(s, t) に連動する点P (x,y) の軌跡 → s, tをx, yで表す。 答 直線 x-2y+8=0 •••••• ① 上を動く点をQ(s, t) とし, 直線 x+y=1 ...... ② ② x, y だけの関係式を導く。 [in 線対称な直線を求め ① るには EXERCISES 71 (p.137) のような方法も 4Q(s,t) あるが, 左の解答で用いた 3章 13 に関して点Qと対称な点を P(x, y)とする。 1 軌跡の考え方は、直線以外 の図形に対しても通用する。 [1] 点PとQが一致しない とき, 直線 PQ が直線 ② 01 x P(x,y) に垂直であるから 1-y.(-1)=-1 (③ 垂直傾きの積が1 s-x 線分PQの中点が直線 ② 上にあるから 「軌跡と =1 ④ 2 ③から 2 s-t=x-y 線分 PQ の中点の座標は x+sy+t ④から s+t=2-(x+y) 2 2 s, tについて解くと s=1-y, t=1-x 上の2式の辺々を加え また,点Qは直線 ①上の点であるから ると 2s=2-2y 辺々を引くと s-2t+8=0 ⑥ ⑤ ⑥に代入して (1-y)-2(1-x)+8=0 -2t=2x-2 s, tを消去する。 すなわち 2x-y+7=0 ⑦ 点PとQが一致するとき、点Pは直線 ①と②の交点 方程式①と②を連立 であるから x=-2, y=3 させて解く。 これは ⑦を満たす。 二から, 求める直線の方程式は 2x-y+7=0

回答募集中 回答数: 0
生物 高校生

⑴の考え方がわからないです。数字が近いものを選ぶなら、3.2.1の順番ではないんですか?何故0の①がイに当てはまるのでしょうか?

Proce 答えよ。 (1 3 (4 基本例題25 系統樹と分類 例題 解説動画 動物 →基本問題 138 表は4種の生物①〜④に共通して存在するあるタンパ 生物 ①0 ① ク質のアミノ酸配列を比較し,2種の生物間で異なるアミ ノ酸の数を示したものである。次の各問いに答えよ。 ② ③ ④ 2 50 0 (1)表の値と分子時計の考え方を用いて,4種の生物の系 ③3 25 54 0 統樹を作成した(右図)。ア~ウとして最も適当な生物を ①~③の番号で答えよ。 4 27 46 10 0 19 (4) (2) このような方法で作成した系統樹を,特に何というか 答えよ。 (3)種は,分類の基本単位である。 種と界の間の分類階級 を,下位から順に5つ答えよ。 第7章 ウ (4)種は,リンネが提唱した二名法にもとづいた学名を用いて表す。 学名で記載する 2つの名称は何か答えよ。 考え方 (1) タンパク質のアミノ酸配列の違いを比較した場合,その異な るアミノ酸の数が大きいものほど種として分岐してからの期間が長く、小さ いほど期間が短いことを示す。 したがって,④と類縁関係が最も近い生物は ③となり,遠い生物は②となる。 (4)学名は、属名と種小名をギリシャ語また はラテン語で記述することが多い。 解答 リア… ③ イ・・・ ① ウ・・・② (2) 分子系統樹 (3)属,科, 目,綱,門 (4)属名,種小名 生物の 甘木頭 石田 基本問題 120 1

回答募集中 回答数: 0
1/1000