学年

質問の種類

数学 高校生

高校数学の問題です。 上が問題で下が解答です。 (2)の問題で、解答の赤文字(黒丸)の部分の 考え方がわかりません。教えて下さい。

実戦問題 10 軸が変化する2次関数の最大・最小 αを定数とする。 2次関数 f(x) = x +2ax+3α² 4 の区間 0≦x≦4 における最大値を M, 最小値を とする。 (1)a=1のとき,M = ア m= イウ である。 (2) 放物線y=f(x) の頂点の座標は α<キクのとき M=ケ I a. a² 力 であるから,最大値 M は コ a≧ キクのとき また, 最小値 mは M = サ a² + a+ スセとなる。 a<ソタ のとき m= チ a² + ツ α+[テト] ソタ ≦a<ナ のとき a≧ナのとき m= a² m = ネ a² - となる。 (3)αの値が変化するとき、 M-mは α = ハヒ のとき最小値フ をとる。 解答 (1) α = -1 のとき f(x)=x²-2x-1=(x-1)2-2) よって, f(x) は区間 0≦x≦4 において> y=f(x) 7 放物線y=f(x)の頂点の座標は (-a, 2a²-4) (S-1) Key 1 区間 0≦x≦4 の中央の値はx=2であるから, f(x) の区間 0≦x≦における最大値 M は (i) -a >2 すなわち a < 2 のとき M = f(0)=3a²-4 (ii) -α ≦2 すなわち a≧-2 のとき M = f (4) = 3a² +8a+ 12 次に,f(x)の区間 0≦x≦4 における最小値mは 最大値 M = f(4) = 7, 最小値 m = f(1) = 2x8+z(+5) (2) f(x) = (x+α) +2a2-4 と変形できるから 01 -1 4x -2 (i) y y=f(x)! Key 1 (!!!) -α > 4 すなわち α < 4 のとき O 2T4 a (ii) YA y=f(x) PA m=f(4)=3a² + 8a +12 (iv) 0 <la≦4 すなわち -4 ≦a <0 のとき m=f(-α)=2a2-4 (via すなわち a≧0 のとき m = f(0)=3a²-4 (3)(2)(i)~(v) より, M-mの値は M-m4 01 (ア) a <-4のとき M-m=3a²-4-(3a²+8a +12) =-8a-16 (イ) -4 ≦a <-2 のとき M-m=3a²-4-(2a²-4) = a² (ウ) −2≦a <0 のとき M-m=30°+8a + 12 - (2α-4) = (a+4)2 (エ) a≧0 のとき M-m=3a²+8a+ 12-(3a²-4) = 8a+ 16 (ア)~(エ)より, M-mのグラフは上の図のようになる。 グラフより, M-mは a=-2 のとき 最小値 4 () a 12 4 x y=f(x) 0 44X a 16 (iv) y y=f(x) 0 a 4 x (v) y 2 0 a y=f(x) a0 4 X 6

回答募集中 回答数: 0
数学 高校生

高校数学の問題です。 上が問題で下が解答です。 (2)の問題で、解答の赤文字(黒丸)の部分の 考え方がわかりません。 教えて下さい。

実戦問題 9 区間が変化する2次関数の最大・最小 2次関数 f(x) = x-6x-3a +18 について (1) y=f(x) のグラフは,点(ア at ウ 1)を頂点とする下に凸の放物線である。 (2)a≦x≦a+2 における関数 f(x) の最小値をm(a) とする。 m(a) = a². オ]a+[カキ] (i) a< I のとき (ii) エ ≤as のとき m(a) ケコ α+サ (iii) <b ク m(a) = a² シ α+スセ (3)0≦a≦8 の範囲でαの値が変化するとき, m(a) は 中 ナニ a = タ のとき最大値 [チツ] a= のとき最小値 である。 ヌ ネ また, a = " 八 のとき m(a)=4 となる。 解答 Key 1 2 (1) f(x)=x-6x-3a +18= (x-3)2-3a+9 よってy=f(x) のグラフは,点(3, -3+9)を頂点とする下に凸軸は直線x=3 の放物線である。 a +2 <3 すなわち a <1 のとき m(a)=f(a+2) =(a-1)2-3a+9=d-5a+10 =(a-5)²+ 15 (ii) a ≧3≦a +2 すなわち 1≦a≦3のとき 0=10... m(a) = f(3) = -3a+9 0> (1-0)(+0) a3のとき m(a) = f(a) = a²-9a+18 S = 2 9 9 4 (3)(2)(i)(ii)より,0≦a≦8の 放物線の軸が (i) 区間より右にある (i) 区間内にある () 区間より左にある の3つの場合に分けて考える。 y (i) y=f(x) IS Oa 3 a+2 右の図のようになる。 よって、この範囲でm(α) は 範囲で y=m(a) のグラフをかくと 最大 (ii) 10% y=f(x) y=m(a) 06 α = 0, 8 のとき最大値 10, 9 9 y=4 2 a=- のとき最小値 4 また、グラフより m(α)=4 となる 9% 201 3 8 αの値は (ii), () の範囲にそれぞれ1 つずつ存在し 9 4 a 3 a+2 (iii) i y y=f(x) (ii) 1≦a≦3のとき -3α+9=4 より α = 5 0 3 a X 3 これは, 1 ≦a≦ 3 を満たす。 a+2 (iii) 3<a≤8 D E F STA α2-9a +18=4 より α-9a +14=0 よって (a-2) (a-7)= 0 3 <a ≦ 8 であるから a = 7 5 (ii), (ii)より, α = 3' 7 のとき m(a)=4 となる。

回答募集中 回答数: 0
数学 高校生

期待値の問題ですが、各確率の求め方が分かりません。 解説お願いします。

96 基本 例題 58 期待値の基本 00000 袋の中に赤玉3個,白玉2個,黒玉1個が入っている。この袋から玉を2個 同時に取り出す。 赤玉1個につき1点, 白玉1個につき2点, 黒玉1個につ き3点もらえる。このときもらえる合計点の期待値を求めよ。 CHART & SOLUTION 期待値変量 Xの値と,その値をとる確率の積の和 期待値 E=x+xz++xe は、次の手順で求める。 ① X1~Xm(とりうる値) を求める。 p.88 基本事項 ②①の各値に対する確率)を求める。ptp+... +pn=1 を確認。 (3) 解答 Ex+x+x” を計算する。 X=2, 3, 4, 5 (11)(12)(1,3)(2,2)(23) 355 5 基本 例題 1から6まで のカード とする。 (1) を (2) X の CHART I (1) X = 5 (2)[1] [2] 解答 (1) 起こ X=5 選ぶと 合計点をXとし,X=kのときの確率を で表す。 Xのとりうる値は X=2 のとき 2個とも赤玉で 3C2 D2 C2 15 X=3 のとき 約分しない (他の確率と 分母をそろえておく) 方 が,後の計算がらく。 赤玉と白玉が1個ずつで 6 (2) X 101 6C2 15 X=4 のとき 3 D3=3C12C1 したが 赤玉と黒玉が1個ずつ, または2個とも白玉で D=3C1XiC1+2C23+1 4 6C2 6C2 15 15 X=5 のとき 白玉と黒玉が1個ずつで X CXC12 p5=- 確率 6C2 15 15 225 5 215 445 3615 15 したがって, 求める期待値は 2× 15+3×15+4x+15+5×15-10-10 (*) 6 PRACTICE 582 (点) 計 1 (1) 袋の中に赤玉3個, 白玉2個, 黒玉1個が入っている。 に取り出すとき, その中に含まれる赤玉の個数の期待値 (2) 表に1,裏に2を記した1枚のコインCがある。 (ア) コインCを1回投げ, 出る数 ついて x+4 の期待値を求めよ。 (イ) コインCを3回投げるとき。 の和の期 (確率の和)=1 を確認。 もし、1にならなければ, 「とりうる値の抜け」, 「計算ミス」 がある。 個同時 した INFO 最大 とし 上の ら! PRA 1 の

回答募集中 回答数: 0
1/1000