学年

質問の種類

数学 高校生

(2)って何故このようになるのでしょうか

130 第2章 2次関数 Check 例題 69 最小値の最大・最小 *** 例題 7 (1) y= (2) y= 岐阜大・改) (ア (イ は実数の定数とする. 本の関数f(x)=x+3x+mmの定数における最小値を おく. 次の問いに答えよ. ただし, m (1) 最小値g をmを用いて表せ. (2)の値がすべての実数を変化するとき, gの最小値を求めよ. 考え方 (1) 例題 68と同様に考える. 軸が定義域に含まれるかどうかで場合分けする。 (2)(1)で求めたg をmの関数とみなし, グラフをかいて考える。 9432 32 解答 (1)f(x)=x2+3+m=xt- +m- グラフは下に凸で, 軸は直線 x=- (i) +222のとき 7 つまり,<- のとき グラフは右の図のようになる. したがって,最小値 g=m²+8m+10(x=m+2) 3 (ii) m≦! ≦m+2のとき 2 つまり、1ma12のとき 3 場合分けのポイント 例題 68 (1) と同様 NT mm+2 小太郎 322 2 グラフは右の図のようになる. したがって, 最小値 最小 m m+2 9 g=m- x=- 4 3 x= 2 「考え方 y お 解答 (1 (iii) m>-- のとき グラフは右の図のようになる。 したがって,最小値 g=m²+4m (x=m) (2)(1) より,gmの関数とす ると,グラフは右の図のよう になる. -4 72- 3 最小 mm+2 94 2 (iii) (vi) m軸,g軸となるこ 注意する よって,gの最小値は, (i) -6(m=-4 のとき) 10 m 15 大気 (ii) 4 23 小 最小 4 F 練習 *** を求めよ. 69g をmを用いて表せ. また, m の値がすべての実数を変化するとき,gの最大値 xの関数f(x)=2x2+3mx-2mの0≦x≦1 における最小値をgとするとき *

未解決 回答数: 1
数学 高校生

画像の問題でなぜa=0の場合も考えなければならないのですか。 また下の問題ではa=0の場合を考えずに解いていたのですが何の違いですか。

重要 例題 56 1次関数の決定 (2) 101 ののののの 関数y=ax-a+3 (0≦x≦2) の値域が 1≦ysb であるとき、定数a,bの 値を求めよ。 基本 49 CHART & THINKING グラフ利用 端点に注目 1次関数とは書かれていない。 また, 1次の係数の符号がわからないから, グラフが右上 がりか、右下がりかもわからない。 このようなときは,αが正, 0, 負の場合に分けて考えて みよう。 →a>0 のときグラフは右上がり, a<0 のときグラフは右下がり。 a>0, a=0, a<0 の各場合において値域を求め、 それが 1sysb と一致する条件から a. bの連立方程式を作り、 解く。 このとき,得られたαの値が場合分けの条件を満たしているかどうか確認することを忘れ ずに。 解答 x=0 のとき y=-a+3, x=2のとき y=a+3 [1] α>0 のとき [1]y この関数はの値が増加するとyの値も増加するから x=2で最大 b, x=0で最小値1をとる。 3 7 関数とグラフ よって これを解いて +3=b, -α+3=1M a=2, b=5 んで これは α>0を満たす。 wwwwwwww [2] α=0 のとき -a+3 70 よん?! この関数は α=0 の場合を忘れない y=3 ように。 このとき, 値域は y=3 であり, 1≦ybに適さない。 定数関数 [3] α <0 のとき [3].y この関数はxの値が増加するとyの値は減少するから, x=0で最大値 b, x=2で最小値1をとる。 ba+3 よって -a+3=b, a+3=1 これを解いて α=-2,6=5 これは α<0 を満たす。 [1]~[3] から (a, b)=(2, 5), (-2, 5) PRACTICE 56 定義域が −2≦x≦2, 値域が −2≦y≦4 である1次関数を求めよ。 (2) 関数y=ax+b b≦x≦b+1) の値域が-3≦y≦5であるとき、定数a, b の 値を求めよ。 が正って なんでわかるのか

未解決 回答数: 1
数学 大学生・専門学校生・社会人

(1)から分かりません。なぜこのようなグラフになるんでしょうか?

123 3章 8 関数とグラフ つけ。 かけ。 重要 例題 立つ。これを場合分けに利用 幅1の範囲で区切り ≦2x<2,2x=2で場合分け、 1≦x<2, x=2で場合分け、 =-2 -2-101 きy=-2 (2) y=-1 71 定義域によって式が異なる関数 関数f(x) (0≦x≦4) を右のように定義すると 次の関数のグラフをかけ。 (1) y=f(x) 指針 (2)y=f(f(x)) 2x (0≦x<2) f(x)= 8-2x (2≤x≤4) 定義域によって式が変わる関数では, 変わる 境目のxyの値に着目。 (2)f(f(x)) f(x)のxにf(x)を代入した式で、 f(x) <2のとき2f(x) f(x)のとき 8-2f(x) (1)のグラフにおいて,0≦f(x) <2となるxの範囲と, 2≦f(x)≦4 となるxの範囲 を見極めて場合分けをする。 (1) グラフは図 (1) のようになる。 (2f(x) (0≦f(x)<2) (2) f(f(x))= 18-2f(x) (2≤f(x)≤4) よって, (1) のグラフから 0≦x<1のとき 1≦x<2のとき 2≦x≦3のとき f(f(x))=2f(x)=2.2x=4x f(f(x))=8-2f(x)=8-2.2x =8-4x f(f(x))=8-2f(x)=8-2(8-2x) =4x-8 3<x≦4のとき f(f(x))=2f(x)=2(8-2x) 変域ごとにグラフをかく。 < (1) のグラフから,f(x) の変域は 0≦x<1のとき 0≤f(x)<2 1≦x≦3のとき ① 2≤f(x)≤4 3<x≦4のとき 0≤f(x)<2 また, 1≦x≦3のとき, f(x) の式は y=0 1≦x<2なら =16-4x f(x)=2x y=1 よって, グラフは図(2) のようになる。 y=2 (1) (2) y ya =x+1 -1 2 A M O 1 2 3 4 x 0 1 2 3 4 x 2≦x≦3なら f(x)=8-2x のように, 2を境にして 式が異なるため, (2) は左 の解答のような合計4 通 りの場合分けが必要に なってくる。 -2=0 an x= ntpと表されるとき、 とき, 01より xの整数部分を表す記号であ 参考 (2) のグラフは,式の意味を考える方法でかくこともできる。 [1]f(x) が2未満なら2倍する。 [2]f(x) が2以上4以下なら, 8から2倍を引く。 [右の図で、黒の太線・細線部分が y=f(x), 赤の実線部分が y=f(f(x)) のグラフである。] なお,f(f(x)) f(x) f(x) の 合成関数といい, (fof) (x) と書く (詳しくは数学Ⅲで学ぶ)。 とする。 8から2倍を 引く 4 2 0 4 x 2倍する 練習 関数f(x) (0≦x<1) を右のように定義するとき, ◎ 71 次の関数のグラフをかけ。 2x (0 ≤ x < 1/1) f(x)= (1) y=f(x) 2x-1 (2) y=f(x)) 11/1/1≦x<1)

回答募集中 回答数: 0
1/155