学年

質問の種類

理科 中学生

教えて欲しいです

重点ドリル 2 地震 もっと なっとく! 学習日 月 AB間の震源距離の差 「ポイント STEP 1 地震波は, 震央を中心に同心円状に広がっていく。 初期微動 P波 継続時間 S ch 3 地震の発生した時刻(1) 右の表は,ある地震について、各地 点の震源距離と初期微動,主要動が はじまった時刻を表したものである。 (1)地点A,Bの震源距離の差は何km か。 地点 初期微動が 主要動が 震源距離 A 56 km はじまった時刻 7時26分45秒 はじまった時刻 B 84km 7時26分49秒 7時26分53秒 7時27分01秒 2 ●初期微動継続時間 ドリル ナビ =S波が届くまでの時間-P波が届くまでの時間 ●地震の波が伝わる速さ 時刻 速さ [km/s]=- 地震の波が届くまでの時間〔s] 震源距離 [km] (2)地点A,BにP波が届くまでにかかった時間の差は何秒か。 km A地点で初期微動が はじまった時刻 A地点で主要動が はじまった時刻 (3) P波の伝わる速さは何km/sか。 秒 活きている地球 1 地震によるゆれの広がり 次の(1),(2)の問いに答えよう。 数字は地震発生時刻から ゆれはじめまでの 時間(秒) 隠岐 加賀 33 35 (1)地震が発生してから各地でゆれがはじまるまで 倉吉 大田 23 の時間が20秒、30秒の地域を, 10秒の線にならっ てなめらかな線で結ぼう。 136 西城 英田/加西 益田 ・舞鶴 MS 22 10秒 16 22 -08 大阪平群 08__ 10 美浜 • 和知 彦根 30 名古屋 (2) 震央の位置を推測して, ×印をかこう。 高野 相生 20 物部 古座 2 地震の波が伝わる速さ 右の図は、ある地震の地点Aでの地震計のゆれの記録である。 (1)地震が発生してから地点Aで初期微動がはじまるまで にかかった時間は何秒か。 秒 震源距離 [km] 120 地点 A (4)地点A,BS波が届くまでにかかった時間の差は何秒か。 (5) S波の伝わる速さは何km/sか。 (6) P波が震源から地点Aに届くのにかかった時間は何秒か。 (7)この地震が発生した時刻は何時何分何秒か。 4 地震の発生した時刻(2) 右の図は,ある地震の地点A, 地点Bでの地 km/s km/s 秒 時 秒 分 [km] 震計のゆれの記録である。 204 (1)地点A, Bでの初期微動継続時間は何秒か。 (地点 B) 地点A 秒 震源距離 地点 B 68 秒 (地点 A) 0 15時 11分00秒 12分00秒(2) 地点 A,Bの震源距離の差は何kmか。 10分20秒 時刻 (2) P波の伝わる速さは何km/sか。 (地震発生) km ① km÷② |s=③ |km/s (3) P波の伝わる速さは何km/sか。 (3) 地震が発生してから地点Aで主要動がはじまるまでにかかった時間は何秒 か。 (4) S波の伝わる速さは何km/sか。 1年 (4) S波の伝わる速さは何km/s か。 km (5) この地震が発生した時刻は,何時何分何秒か。 00秒 20秒 8時15分 8時15分 8時15分 8時16分 8時16分 00秒 20秒 40秒 時刻 km/s km/s 時 分 秒 35

回答募集中 回答数: 0
数学 高校生

数Bの統計的な推測の仮説検定です。四角の部分がなぜ、正規分布表から、この数が出てくるのか分からないので解説お願いしたいです!

94 第2章 統計的な推測 10 5 9 仮説検定 数学Ⅰで学習した仮説検定について, 正規分布を利用する方法を学ぼう。 A 仮説検定 ある1枚のコインを100回投げたところ, 表が61 回出た。 この結果 から 「このコインは表と裏の出やすさに偏りがある」 と判断してよい ろうか。 すると, 表が出る確率と裏が出る確率は等しくないから,次の [1] がい コインの表が出る確率をとする。 表と裏の出やすさに偏りがあると える。 ここで,[1] の主張に反する次の仮定を立てよう。 [1] p=0.5 [2] p=0.5 「表と裏が出る確率は等しい」と仮定 出本 001 [2]の仮定のもとでは, 1枚のコインを100回投げて表が出る回数x は,二項分布 B(100,0.5) に従う確率変数になる。 2 期間に含ま たのだから。 覚えるとの主張 ると判断してよさ 2 一般に、母集団に関して 果によって、この仮説 検定という。また、 するという。 前ペー が棄却されたこ 仮説検定では、前ペー こると仮説を棄却 基準となる確率αを たは 0.01 (1%)と定め 有意水準αに対して B 15 Xの期待値mと標準偏差のは ような確率変数の値 m=100×0.5=50, o=√100×0.5×0.5 = 5 78 ページ参照 範囲を有意水準α であるから, Z= X-50 5 は近似的に標準正規分布 N(0, 1) に従う。 ページの例では、 ① 正規分布表から y P (-1.96 ≦ Z≦1.96) = 0.95 である。 確率変 ければ、「仮説を乗 0.95 120 である。このことは, [2] の仮定のもとで 0.025 きない場合、その 0.025 Z-1.96 または 1.96 ≦ Z ① という事象は,確率0.05 でしか起こらない 22 1.96-01.96- ことを示している。

未解決 回答数: 1
1/679