学年

質問の種類

物理 高校生

色塗ってるとこの式変形分からないので教えてください!お願いします

こると A cosx と 点dでは CA の媒質の 2πA T -=2U 振動から遅 yは、時刻における原 点での変位に等しい。 ゆえに y=Asin- sin 27 (t-x) ひ ) 波が原点から固定端を経て位置xに伝わるのにかかる時間は,原点から L+(L-x)=2L-xだけ移動しているので、 (3) 2L-x V であるA また,固定端反射では波の位相がずれることから, 時刻における位置x での反射波の変位 y2 は, 時刻t-2-xにおける原点の変位の位相を けずらしたものになる。 2π T Asin (27 (1-21-x)+x|--Asin 2 (1-21-x)on ※B 2L よって y=Asin (4) (2) (3)の合成波の変位をyとすると 277 y=+32=Asin (-)+(-Asin 2(-2-x) T 2π =2Asin T 2L-x V 2 COS 2L- 2π V T 2 <<-A 0 =2Asin となる。 この式において 2Asin T L. cos cos 27 (t-L) 2 (1-x)は振動の位置 x での振幅を表 =(-1)x Asin(ユ ◆ B (2)の結果を直接用いる形の解 法は、彼が原点からx=L で反射して位置まで進む距 離は (2L-x) 固定端にお ける反射で位相がずれるの で、変位は (−1)倍される (位 相が反転する)。 以上より ( のxを (2L-x) にかえて. 変位ys を (-1)倍したもの が yとなる。 t- は時刻に依存した振動を表すので, 波形の進行しない L sin 2x (L-x) cos 2-(1-1) 定在波とわかる。 (5)定在波が最大振幅になるのは COS 2 (t-1)=±1 のときだから y=±2Asin T 2x (L-x) 5 <-%C 固定端は定在波の節節 y= ±2A sin 2x(x) (1)の結果,入=vT と L=2』 を用いると 54 L=±2.Asin2 )= ±2A sin 2x() の最大振幅は2Aである 記の定在波の特徴を用い 図することもできる)。 2A- = 士24sin (12/26) 5 5x 2L 5π =2A cos -x 2L 0 1 5 よって、波形は図a の実線または破線のようになるC -2A セント 75 〈円形波の反射〉 (1) 「反射の際、波の振幅および位相は変わらない反射波は器壁に対して点①と対称な点を波源とする波と同 (2) 反射の際に位相が変わらないので、「2つの波が弱めあう条件』(経路差)=(半波長)×奇数 (3)波源から遠くなると2つの波の経路差は小さくなる。(5)(L上の節の数)=(Oと壁の間にある節の数) (10) ドップラー効果は波源と観測者を結ぶ方向の速度成分によって起こる。 物理重要問題集

未解決 回答数: 1
数学 高校生

微分についての質問です。一枚目の写真で青マーカーを引いたところには、「三次不等式はグラフを利用して求める。極値を求める必要はない。」とありますが、例題212.213では極値を出して解いている気がします。 ・なぜ例題212.213では極値を出して、例題216では極値を出して... 続きを読む

2 406 第6章 微分法改 練習 [216] **** 7956 く 50 785 2210 196 例題 216 三角不等式 **** cos 30 + cos 20+ cos >0 を満たす0の値の範囲を求めよ.ただし, 0≦02 考え方 解答 とする. 例題 212(p.402) と同様にして3次関数のグラフとx軸の位置関係を考える. まず cosa=t とおき,tの3次不等式を作る cost とおくと,002πより、 また, cos30=4cos0-3cos0=4t-3t cos 20=2 cos 0-1=2t2-1 4t3+2t-2t-1>0 したがって, 与式は, (4t-3t) + (2-1) +t>0 2t2(2t+1)-(2t+1)>0 (2t+1)(2-1)>0 ...... ② (2t+1)(2-1)= 0 とすると, tの値の範囲に注意 与式の左辺を cosで 統一する。そのとき 倍角,2倍角の公式を 利用する. ((p.269 参照) 組み合わせを考えて, 因数分解する。 [解] Commen ここ こで, 2 線が一致 200 とし, 線をも この √2 1 1 t=- 0 2' √2 2 y=4t+2t-2t-1 のグラフは, 右の図のようになる. したがって、②の解は、 ①より RD 3次不等式はグラフを 利用して考える. 極値 を求める必要はない。 30 1 <t≦1 √2 2√2 よって,t=cos 0,0≦02 より 0≤0< 単位円を利用して8の 範囲を求める. て π 第3,4象限の解と第2, 2 3 147 4 1 √2- 1象限の解は,それぞ 例 0 5 << 27 << れx軸に関して対称 10 1 x 43 7 3π 1 4π 注〉和積の公式を用いて次のように解くこともできる. (p.274 参照) ( cos30 + cos 0) + cos20>0 2 cos 20 cos 0+ cos 20>0 cos 20 (2 cos 0+1)>0 (2cos'0-1)(2cos0+1)>0 ここで, cosa=t とおくと, cosA+ cosB=2cos- A+B A-B COS 2 2 (2t2-1)(2t+1)>0 あとは、例題216と同様にして解けばよい. tan 20 + tan00 を満たす 0 の値の範囲を求めよ。ただし,0≦02 とする. 次

回答募集中 回答数: 0
数学 高校生

解答の3行目と4行目がなんでこうなるのか教えて欲しいです!!

104 第4章 三角関数 基礎問 精講 63 三角方程式 < Osa SBSπとするとき cos(-a)=s COS をαで表せ. この問題は数学Ⅰの範囲でも解けますが、弧度法の利用になれる。 とも含めて、数学IIの問題として勉強します。 この方程式は三角方程式の中では一番難しいタイプで,種類 (sin, cos) も角度 ( α, β) も異なります. このタイプは,まず種類を統一 a =sinα を用いて, sinα = cos 2β ...... ① をみたす ならば一になります。この問題では 20 たとえば,右図の位置に動径があるとき,角度の 呼び方は, 与えられた範囲によって変わります。 もし、00<2ならばだし、一ヶ≦0<x 105 YA 11 0 01/11となっているので2=αと 2π (別解) cos2β=cos( 和積の公式より, ることです。そのための道具が cos Cos (フレーム) =sina で,これでCos にて きます。そのあとは2つの考え方があります。 =0 . sin (3+42) 0 または,sin (B-1+1/2) = 0 0<-≤1, os(a)より、cos2β-cos ( -2sin(+4) sin(B-4+ -(-a)になります。一αを音と考えてみたらわかるはずです。 cos (-a)=0 57 参照 = 0 解答 COS cos(-a) =sina より,①は, sind=cos(-a) sind= cos2β YA ここで,/ cos 28-cos(-a) m DEBET 2 0≤28≤2π, 0<-α≤ 右の単位円より, a π 3π -α, +α mi 2 = -1 0 B より 5π 0<ẞ+---+<* 4 2 4' 42 B+4号πB-+号-0 =π, 2 よって、B-2+1.41 β= π a 2'42 注 どちらの解答がよいかという勉強ではなく,どちらともできるよ うにしておきましょう. 特に, 数学Ⅲが必要な人は,和積の公式を頻 繁に使うことになるので,その意味でも (別解)は必要です。 ポイント 種類も角度も異なる三角方程式は 注参照 まず, 種類を統一する a + 3π 4 2'4 2 +α - 17 -α) と表現してはいけません。それはOS2Bだ 演習問題 63 からです。--+=+α 現です. 3 +αがこの範囲においては正しい表 櫻 (0) 第4章 as, OSBSとするとき, sincos2β をみたすβを αで表せ.

回答募集中 回答数: 0
数学 高校生

青チャート数Ⅱ、EX101です。どれも解答を読めば理解はできるのですが、公式をどのように選べば良いかわかりません。 (1)は2倍角、3倍角公式で解こうとして、 (2)はcosθで括ってから合成をしようとして、 (3)は√2(sinx + cosx) を合成しようとして、 ... 続きを読む

50 スマー の例題 入の方 [解] の2 青チ チ 八重お種学問 ■日 A 選び あり 考 例 間 え・ ど [ デ 270 I EXERCISES 100nを自然数を実数とするとき, 次の問いに答えよ。 (1) cos(n+2)0-2cos@cos (n+1)0+cosn0-0 を示せ。 (2) cos0xとおくとき, cos50 をxの式で表せ。 (3) cos' の値を求めよ。 26 三角関数の和と積の公式. 101 (1) sinx+sin 2x+sin 3x cosx+cos2x+cos3x 人(②2) 050<1とする。 不等式0<< sinocoso+cos²0 < 1 を解け。 (3) 05x<2のとき、方程式 sinxcosx+√2 (sinx + cos.x)=2 (3) 弘前大) 12/12 とするとき、次の問いに答えよ。 27 三角 (1) tan0x とするとき, sin20, cos20 をxで表せ。 (2) xがすべての実数値をとるとき, p= 7+6x-xl 1+x ア (1) の結果を用いて, P を sin20, cos20 で表せ。 (イ))の結果を用いて, Pの最大値とそのときのxの値を求めよ。 IN とする。 a 103 の方程式 sinx+2cosxk (0sxm) が異なる2個の解をもつとき の値の範囲を求めよ。 [愛知] G ②104 関数f(0)=acos0+(a-b)sinocos0+bsin²0 の最大値が3+√7, 3-√7 となるように,定数a, bの値を定めよ。 CORMAS 102 (1) cos'01 105 平面上の点Oを中心とし、 半径1の円周上に相異なる3点 , B, C △ABCの内接円の半径は1/3以下であることを示せ。 京都 104 105 100 (1) 左辺の2cos@cos(n+1)0. 積和の公式を利用して変形。 (3) 6 7 x として (2) の結果を利用。 101 (1) 三角関数の合成と、和積の公式を用いて、 積=0の形に変形。 (2) sin@coscou'eは2次の次式であるから、20の三角関数で表され (3) sin.x+cos.x=tとおく。 の値の範囲に注意。 1+tan 1+² (2) (1) 結果 ① を利用。 103 三角関数の合成を利用。 f(x)=sinx+2c0sx として, y=f(x)のグラフと なる2つの共有点をもつ条件を考える。 )の右辺は、2次の同次式であるから、20の三角関数で表すことができる。 AABCの内心を1とすると ICsin IDC において、正霊定理から得られる等式を利用して、 rを 1 174 数学Ⅱ よって x0であるから ゆえに ここで, 0 すなわち (16x20x²+5)=0 EX €101 これを満たすxの値は 16x20x²+5=0 10± √10-16.55+√5 よって 求める値は 10 t < cos<cos' <cos³0 16 ゆえに (1) 0のとき、次の方程式を解け。 (1) P (左辺) (右辺) 5+√5 8 8 よって sinx+sin 2r+sin3x-cosx+cos 2x+cos3x (2) とする。 不等式√ sincom0+cos0を解け。 (3). DEx 240LB, IlliCsinxcor+/Z(sinx+cox)= ¢H = (sinx-cos.x)+ (sin2x-cos2x)+ (sin3x-cos 3.x) -√2 (sin(x-7)+sin(2x-7)+sin(3x-7)} ここで,sin(x)+sin(3x-4) 2sin (2x-4) cons.x であるから P=√2 (2 cosx+1)sin(2x-4) したがって、方程式は (2 cos x+1)sin(2x-)-0 cosx/12/2… ① または sin (2x-4) -0... ② xの範囲で、①を解くと x 12/23 また、xから この範囲で②を解くと 2x-4-0, z x すなわち x 12/23 したがって、求める幅は4001/12/12/10 (2)√3 sin cos0+cos²0= √3 + 1/cos 20 + 1/2 -sin20+ =sin(20+)+1/2 とみる。 $2√3 3+√5 5-√3 ←同じ を合成。 ←8- in/+ -2 si 1 +2=0+ b 0<sin(20+)+<1 - <sin (20+4)</ すなわち 20 とおくと、00のと この <sint</1/2を解くと 1/12 くたく/7/2 ゆえに 1/20/8/1/2 すなわち書くの (3) sinx + cosxとおき、両辺を2乗すると fsin'x+2sinxcosx+cos³x よって 不等式は よって sinxcosx ゆえに、方程式は221-2-0 21+4√21-5-0 (√21-1)(√21+5) - 0 整理すると ゆえに したが ここで 1-√2 sin(x+4) よりであるから -√2 515√2 よって、①のうちするものは 15212 √2 sin(x+4)= sin(x+4)= ②から よって1/12 17/12/0 EX 102 とするとき、次の問いに答えよ。 (1) tunxとするとき, sin2020 で表せ。 (2) xがすべての実数値をとるとき、とする。 いて、 Psin2/cos20 で表せ。 (1) cos201 イの結果を用いて、 の最大値とそのときのxの値を求めよ。 であるから 1+tan0 1+x² sin20-2sin0 cos 02 (tan cos 0)cos0 2x 1+x1+x² =2tan/cos²0=2x. cos 20=2 cos³0-1-21 1-x² -1=1+x² ● 数学 175 おき換え が変わることに注意 ix, cox MBR f-stax +con おき換えを利用。 の公式で解くと MITWE ←EABROOK 変数のおき換え が変わることに注意 MCMAS ←相互開催 ←i sind -tan feos 4章 EX

回答募集中 回答数: 0
数学 高校生

三角関数の和積の公式を用いる問題なんですけど、 計算がどうなってるのかが分かりません💦 解説お願いします🙏

240 基本 例題 152 (1)積→和,和→ (7) sin 75° cos 15° 8-A 解答 (2) △ABC において,次の等式が成り立つことを証明せよ。 FAOB- OP 0+ sinA+sinB+sin C=4 cos mia. H-1A+B+C=xから、最初にCを消去して考える。 そして,左辺の sin A + sin B に 和積の公式を適用。 和と積の公式 積の公式を用いて,次の値を求めよ。 () sin 75°+sin 15°=2 sin- ! ゆえに (1) () sin 75° cos 15°= {sin (75° +15°)+sin(75° — 15°)} 2 = 1/ 4 よって -cos 80° + (2) A+B+C=²5 (1) sin 75°+sin 15° ( cos 20° cos 40° 75°+15° 2 2 2+√3 (sin 90°+sin 60°)= (1 - 1/ (1+√3)= ² + 1/3 2 4 2 1 cos 80°-- -c 4 COS p)nie+(849) 1 cos 20° cos 80°= 4 cos 80° + = () cos 20° cos 40° cos 80°= (cos {cos 60°+cos(-20°)}cos 80°= 1/2 (21/12) +cos 20° 2 sin A+sin B+sin C=2 sin- (8-30) 200- =2 sin = 2 cos 4 co 75°-15° 2 (2) △ABCにおいて 海の等 A+B 2 A+B 2 A 2 cos- PRESE 16-wale (8+1)niel C= π-(A+B) +18+28 sin C=sin(A+B), cos= cos(+/- A+B). 2 20 COS cos A B C / cos COS 22 p.239 基本事項 ①1 ② 1 1 cos 80°+cos 100° += cos 80°+cos (180°-80°) + 1 8 4 8 1 1 8 8 =2 sin 45°cos 30°=2. onle=(8-)nie -cos 80° + COS •2 cos A-B 2 COS Apogonie 80 ng =8) 2001-201 2 B cos cos 1 1 2 2 ● (1) cos 105°-cos 15° A-B 2 B Acos(-) 2 200) |=sin- +sin 2. TAOR +cos A <RAOR A+B 2 -{cos 100° +cos(-60°)} +y)+tan( A+B 2 A+B 2 √2√3 2 2 24 N 2 2. mie satu cos 80° 練習 (1) 積和,和→積の公式を用いて,次の値を求めよ。人分1② 152 (7) cos 45° sin 75° (1) sin 20°. 90+01

未解決 回答数: 1
1/5