学年

質問の種類

英語 高校生

この答え持ってらっしゃる方いらっしゃいませんか。

Review for Lesson 1 A: Check Read the passage and answer the questions below. What kind of qualities do you think a "leader" has? You might imagine a strong, confident person [gives directions to other people. However, such a one-way style of leadership has become less common. These days, thanks to the Internet, you can easily voice your opinions. This has resulted in more cooperative decision-making. G [3]. These skills focus on empowering all members, improving communication, and enhancing teamwork. Successful 21st century leaders bring people together by respecting all members' opinions. They lead through collaboration, not by control. Today, the world is changing at an incredible pace. To tackle ongoing global challenges, it is helpful to learn about the importance of leadership. By developing leadership skills, you can improve your community, your school life, and yourself. Hind say (1) Fill in the blank by choosing from the words below. [ which who / whom / what ] (2) What does 2 refer to? Answer in Japanese. (3) Put the words below in the correct order to fill in blank 3. [ to use a cooperative / "soft skills" / team / modern leaders / build 1. (4) Translate 4 into Japanese. (5) According to the passage, which of the following sentences is true? a) Soft skills are becoming popular among one-way style leaders. b) Today's leaders use soft skills to encourage others to communicate. c) The world is changing so hat soft skills are not useful. (6) If you develop leadership skills, what can you do? Answer in English. 6 Lesson 1

回答募集中 回答数: 0
数学 高校生

このような問題の文字係数の方程式を解くときにどのような思考回路?で解けばいいですか? 教えてくださいお願いします😢

**** y), a-1- 直接計算するの 二変なので、 果を利用し を下げる. と同様, 次数を下げて る. Think 例題 55 文字係数の方程式 解答 aを定数とするとき, 次の方程式を解け. (1) ax²-(a+1)x+1 = 0 Focus 「練習 55 考え方 文字係数を含む方程式を解く問題. p.68 の例題 29 文字係数の不等式と同様に考える。 つまり、見かけ上の最高次の項の 係数が0の場合とそうでない場合を分けて考える。」 **** (1) (i) a=0 のとき たとえば,(1)では, x2の係数α に着目すると, a=0 のとき, -x+1=0 となり, 1次方程式となる. a=0のとき, ax²-(a +1)x+1=0 の2次方程式を考える. もとの方程式は, -x+1=0 より, (ii) α = 0 のとき ax²+(-a-1)x+1=0 (x-1)(ax-1)=0 より, α = 0 のとき, x=1 よって, (2) (a²-1)x²=a-1 (2) (a-1)(a+1)x²=α-1 (i) a=1のとき a=0のとき、x=1.12 (ii) α=-1のとき x=1. もとの方程式は, 0.x2=0 このとき, xはすべての実数 (ii) αキ±1 のとき 3 2次方程式と2次不等式 123 パーリフター もとの方程式は, 0.x2=-2 これを満たすxは存在しないので、解なし x=1 1 α²-1 ¥0 から、 両辺を2-1で割って, x2= 1 a+1 = √a+1 a+1 a>-1のとき x=± ②a<-1のとき、解なし よって, (i)a=1のときxはすべての実数 ②a≦-1のとき、解なし **** x2の係数が0のとき, x2の項がなくなるの で,xの1次方程式に なる. √a+1 0 -1<a<1,1<a のとき, x=± a+1 1 -1→>> X= -a -1→> -1 x² = α=1のとき, xがど のような値であっても, 0x=0 は成り立つ。 α=1のとき, xに どのような値を入れて も.0.x=-2 が成り 立たない. 文字係数の2次方程式(x²の係数) 0 に注意 αを定数とするとき, 方程式 ax²+(2-a)x-2=0を解け、 -a-1 F 1 a+1 a+1>0 つまり、a> a-l (a+1)(a-1) >0より、 第2章 p. 168 (14)

回答募集中 回答数: 0
数学 高校生

何で重解から考えるんですか?

282 第4章 関数の極限 Check 例題124 無理関数のグラフと直線 ・・① のグラフと直線y=x+k•••••• ② との共 関数 y=√2x-1 有点の個数を調べよ.ただし,k は実数の定数とする. 考え方 まず無理関数 y=√2x-1 のグラフをかく. 次に,kの変化に応じて,直線を動かして考える. 直線を上から下に平行移動するとき, 次の2つに注意 すれば、共有点の個数の変化がつかみやすくなる。 ① 曲線 ①と直線②が接するときのんの値 図] 直線②が曲線 ①の端点 (121, 0) を通るときのん CARAC の値 つまり,①を境として共有点の個数が 850 0個→1個→2個 を境として共有点の個数が 2個→1個 解答 ①のグラフは右の図のように なる. na まず①,②のグラフが接する ときのんの値を求める. ① ② より 両辺を2乗すると, Focus √2x-1=x+k k</1/2,k=0のとき. 2' <0 のとき, 共有点の個数はグ を対称軸とす とそれぞれ変化する. 2 YA 34+05-\ flampa 1- 845 VAS Ø 1 1 MX 2 2個 (2) (1) 48 2x-1=(x+k)2 より, x2+2(k-1)x+k²+1 = 0 LEDS この方程式の判別式をDとすると, 重解をもつから, D =k-1)-(k²+1)=-2k=0 より, k=0 次に、直線②が点 ( 12.0)を通るときのたの値を求める。②にx=yal を (☆) 0= 1/2+kk), k=- 代入する. 2 以上より, ①,②のグラフの共有点の個数は, >0のとき、 0個 1個 eta + (a y=√2x-1 y=x+k 2 y=√/2x-1 ①のグラフと数本の 当な②のグラフをかく y = √(√2(x - 1) ①のグラフは y=√2x のグラフを x 軸方向に1/だけ 行移動したもの 接する重解をもつ ⇔D=0 グラフで確認する。 ん の値の減少により、 ②は下方に平行な動 る.

回答募集中 回答数: 0
数学 高校生

ベクトル「条件を満たす点の動く範囲」が苦手です。 s+t=1 直線のベクトル方程式は導き出せるのですが 不等式が付くと途端に解けなくなります。 ちなみに下記の写真(1)から解けませんでした。 「条件を満たす点の動く範囲」を解く際のコツ注意点 等をご教授願いたいです。お願い... 続きを読む

Check X 例題 367 条件を満たす点の動く範囲 (2) △OAB に対し, OP = SOA+tOB (s, t は実数) とする. s, tが次の条 件を満たすとき,点Pの動く範囲を求めよ. (1) Osss, Ost≤1 (3) -1<s+t <2 考え方 (1) まずsを固定したままで tを動かしてPの動く図形を求める. 解答 (1) S=kとおくと, 0≦k≦/1/2 (2) s+t=kとおいて,これを例題 366と同様に s'+f'=1 で表してみる。 (3)(2) と同様に考える. ただし, s+tキー1 2 であることに注意する。 B E B' ここで,線分 OA の中点をA' とし, p 線分 OA'上に点Dをとる. さらに, BE = OD=kOA となるように点Eをとると, OP=sOA+tOB=kOA+tOB S t k k したがって, (2) 1≦t≦2, s≧0, t≧0 + -=1 ...... ① =OD+tOB より≦t≦1の範囲では, 点Pは線分 DE 上を動く. 次に,kを 0≦k≦1/2の範囲で変化させると,点D は線分 OA'上を点Oから点A' まで動く. よって, 点B' を O' OA' + OB を満たす点とす ると, 点Pは,上の図の平行四辺形OA'B'Bの周上お よび内部を動く. 301-40 (2) s+t=kとおくと, k≠0 より, OP=SOA+tOB S k 0 'DA' (kOA)+(kOB) 0 ここで、S=1/72=1/10 とすると, t' となる点D,Eをとると ①より, s'+t'=1 また, s≧0,≧0より, s'≧0, t'≧0 直線OA, OB 上にそれぞれ, OD=kOA, OE=kOB は線分DE を表す. したがって, 1≦k≦2 より OR'-105 E BA 17.00 B' P OP=s'OD+t'OE (s'+ t'=1, s'≥0, t'≥0) AD A *** まずは,sを固定 て考える. tを固定して てもよい) tを具体的な数で えると, t=0 のとき, OP=sOA t=1 のとき, OP=SOA+08 2010より、 の範囲は図のよう なる. BF SOAS 0 t=0 0≤x≤ 1/1, 053) の表す領域は下の のようになる。 0 11 2 linxtys2. y≧0の表す領 下の図のようにな 管理 Focus は直 L OA 含ま B00O

回答募集中 回答数: 0
数学 高校生

(2)の始めの部分の説明が分かりそうで分かりません。 別の言葉で説明して欲しいです。🙇‍♂️

04 第1章 複素数平面 Check 例題22 単位円に内接する正多角形 複素数平面上において, 原点Oを中心とする半径 1の円に内接する正六角形の頂点を表す複素数を, 左回りに 21 22 23, 24, 26, 26 とする。 また、a=cosisin / とする、 このとき、次の問いに答えよ。 (1) 21+2+2+2+2+26 の値を求めよ。 (2) (1-a) (1-ω°) (1−ω^) (1−ω^) (1-α)=6 であることを証明せよ。 点 1,2,...... 26 は単位円周上の6等分点である。 点21を原点○のまわりに、 -π, 2 3'3 26 に移る(p.54 例題 19注〉> 参照) (1) Z1,Z2, ...... 26 は単位円周上の6等分点である. また、acosisinは,点z を原点Oのまわり に今だけ回転させる複素数であるから, 22=a21 23=0z2=Q2z1 26=025=0521 となるので, 21+22+23+2+25+26 1文字 +z+α2z1+°z+αz]+α°21] …....① ① は,初項 21, 公比 α の等比数列の初項から第6項ま での和である. α=1 より, となる. zi+z2+2+2+25+26=- ここで, -(cos+isin) =cos 2π+isin 2π =1 conisin / よって、 26 = 1 が2-1=0の解となる. 21+22+23+4+25+26= 0 (2) (1)より,@は1の6乗根の1つであり、 1, la, la, la, la, las 6分 よって, _2₁(1-a) 1-a 24 zna (半径121の円6等分 5 だけ回転させると、それぞれ y 0 ④文字減らし!! 2月 初項 公 (1) の等比 の初項から第 までの和は、 zi(1-a") 1-a p.54 例題 19 注》参照 Focus 練習 22 ***

回答募集中 回答数: 0
英語 高校生

和訳お願いします。

次の英文を読んで, 設問に答えなさい。 [5] The headline grabs your attention: "The ancient tool used in Japan to boost memory." You've been The Japanese art of racking up clicks online more forgetful recently, and maybe this mysterious instrument from the other side of the world, no less! could help out? You click the link, and hit play on the video, awaiting this information that's bound to change your life. The answer? A soroban (abacus). Hmm, () それは私がどこに鍵を置いたか覚えておく助けになりそうには ないですよね? This BBC creation is part of a series called "Japan 2020," a set of Japan-centric content looking at various inoffensive topics, from the history of Hiroshima-style okonomiyaki pancakes to pearl divers. The abacus entry, along with a video titled "Japan's ancient philosophy that helps us accept our flaws," about kintsugi (a technique that involves repairing ceramics with gold-or silver-dusted lacquer), cross over into a popular style of exploring the country: Welcome to the Japan that can fix you. For the bulk of the internet's existence, Western online focus toward the nation has been of the "weird Japan" variety, which zeroes in rare happenings and micro "trends," but presents them as part of everyday life, usually just to entertain. This sometimes veers into "get a load of this country" posturing to get more views online. It's not exclusive to the web traditional media indulges, too but it proliferates online. Bagel heads, used underwear vending machines, rent-a-family services - it's a tired form of reporting that has been heavily criticized in recent times, though that doesn't stop articles and YouTube videos from diving into "weird Japan." These days, wacky topics have given way to celebrations of the seemingly boring. This started with the global popularity of Marie Kondo's KonMari Method of organizing in the early 2010s, which inspired books and TV shows. It's online where content attempts to fill a never-ending pit - where breakdowns of, advice and opinions about Kondo emerged the most. Then came other Japanese ways to change your life. CNBC contributor Sarah Harvey tried kakeibo, described in the headline as "the Japanese art of saving money." This "art" is actually just writing things down in a notebook. Ikigai is a popular go-to, with articles and videos popping up all the time explaining the mysterious concept of ... having a purpose in life. This isn't a totally new development in history, as Japanese concepts such as wa and wabi sabi have long earned attention from places like the United States, sometimes from a place of pure curiosity and sometimes as pre-internet "life hacks" aimed making one's existence a little better. (B) The web just made these inescapable. There's certainly an element of exoticization in Western writers treating hum-drum activities secrets from Asia. There are also plenty of Japanese people helping to spread these ideas, albeit mostly in the form of books like Ken Mogi's "The Little Book of Ikigai." It can result in dissonance. Naoko Takei Moore promotes the use of donabe, a type of cooking pot, and was interviewed by The New York Times for a small feature this past March about the tool. Non- Japanese Twitter users, in a sign of growing negative reactions to the "X, the Japanese art of Y" presentations, attacked the piece... or at least the headline, as it seemed few dove the actual content of the article (shocking!), which is a quick and pleasant profile of Takei Moore, a woman celebrating her country's culinary culture. Still, despite the criticism by online readers, the piece says way more about what English-language readers want in their own lives than anything about modern Japan. That's common in all of this content, and points to a greater desire for change, whether via a new cooking tool or a "Japanese technique to overcome laziness." The Japan part is just flashy branding, going to a country that 84% of Americans view positively find attention-grabbing ideas for a never-ending stream of online content. And what do readers want? Self-help. Wherever they can get it. Telling them to slow down and look inside isn't nearly as catchy as offering them magical solutions from ancient Japan.

回答募集中 回答数: 0