学年

質問の種類

数学 高校生

エオの部分で、なぜx=2/5について対象になるのかがよくわかりません。

実戦問題 5 絶対値記号を含む方程式・不等式 (2) (1) α を正の実数とする。 不等式 |2x-5 Sa… ① の解は ア a ウ 不等式①を満たす整数xが6個であるようなαの値の範囲は I ア a + である。 ① ウ sa<オである。 Q x の範囲で方程式 ② の解を求めると, x=カ x= ク である。 〔2〕 方程式 x2-4x+4 = |2x-5| ... ②について考える。 5 2 また, x< 12 の範囲では万程式(②)の異なる解は全部であり、その中で最も小さい解は である。 解答 Key 1 〔1〕 2x-5|≦a より -a≤2x-5≤a よって, 5-a≦2x≦5+α より 5 a 5 a 2-2 ≤ x ≤ +. 2 2 不等式① を満たす整数xが6個であ るのは,5≦ 5 2 a ・+ <6 のときであ 2 るから 10≦5+α <12 したがって 5≦a<7 Key 2 〔2〕 x≧ 5 のとき, 方程式 ②は 2 整理して x2-4x+4=2x-5 x2-6x+9=0 (x-3)2=0 より x =3 22 23 数直線上で, 不等式① の解を表 5 56 +量 +622 [x すと, x = について対称で 2 あるから, 2 5-2 5 ≤ x ≤ + の範囲に整数が3個あればよ い。 352 + b 2.x-5≧0gなわち 5 x≥ 2mmのとき |10|2x-5|=2x-5 5 これは x≧ を満たす。 2 1 よって Key 2 また, x< x52 x=3 いて のとき、方程式②は x4x+4=(2x-5) 要労門式場/25 < 0 すなわち 整理して x²-2x-1=0 5 人 10+1+分> 22.0 x< <号のとき 2 よって x=1±√2 3 3 ++ |2.x-5|= -(2.x-5) より, -1> -√2> - であるから 2 2 <1-√2<0, 2<1+√2< 5 2 5 よって, x=1±√2 はともにx< 2 を満たすから,この範囲で方 程式②は2個の異なる解をもち, その中で最も小さい解は x=1-2 21.41・・・< 1 < √2 <2 で評価すると, 1+√2との大小関係がわ からないため、12で 評価する。 3 2 1

解決済み 回答数: 1
数学 高校生

(1)の回答に書いてあるa<-2の時の表のaが関係する部分ってどうやって傾きがプラスかマイナスかがわかるんですか? また、解答の2の場合は特に、aの正負がわかりませんが、どうやって最小値がわかるんですか

● 12 絶対値つき関数/折れ線 (文字定数入り) f(x)=x+2|+|-3|+|x-a| とする. 次の問いに答えよ. (1) αを定数とするとき、関数y=f(x) の最小値をα を用いて表せ。 (2) (1) での最小値が6となるようなαの値を求めよ. (中部大・ 応用生物) 折れ線の増減は傾きで 前問で述べたように, f(x) の増減は,各範囲の傾きを追いかけることで とらえることができる。 前間で述べたように, y=f(x)のグラフは1本の折れ 折れまがる点のx座標の大小で場合分け 線であり,折れまがる点の座標は, x=-2, 3, αである. 前問の(1)から分かるように、折れまがる 点のいずれかで最小となる. よって,αと2,3との大小で場合分けが必要である. ■解答量 (1) αと2,3との大小で場合分けをする. 1° a<-2 のとき,a<x<-2の範囲では、3つの 絶対値の中身の1つが正で, 2つが負であるから, 絶対値記号をはずして得られる1次の係数(傾き) は-1である. 同様に各範囲について, 傾きを求 めると右表のようになるから, x=-2で最小値 をとる. よって, |-3|=-(x-3) |x-a|=r-a I a -2 3 a<x<2では, 傾き -3 -1 1 3 |x+2|=-(x+2) y -2 (a) 3 となる. m=f(-2)=0-(-2-3)+(-2-a)=3-a 2°-2≦a≦3のとき, 同様に=αで最小で, m=f(a)=(a+2)-(α-3)+0=5 y -1-120-2 3° 3 <αのとき, -2 <3 <αであるから, 同様にx=3で最小で, m=f(3)=(3+2)+0-(3-4)=α+2 x -2 a (2) (1)の1か3°のときである. よって, y )× 2 「α <-2 かつ3-46」 または 「3<a かつα+2=6」 α-3 または α=4 注 a=-2,α=3のときは,下のようになる. a=2のとき a=3のとき f(x) =2x+2|+|r-3| f(x)=|x+2/+2|z-3| I -23 I -2 3 傾き -3 1 3 傾き -3 -1 3 y y V 12 演習題(解答はp.27 ) a,b,cは定数でα<b<c を満たすものとする. 関数f(x) を f(x)=x-a|+|r-b|+|x-c|で定める。 (1)ェがすべての実数を動くとき, 4x+3f(x) の最小値を求めよ. 1+0-2 ←α=-2のときのグラフは下図. y+ 10- -5 0 3 (2)ェがすべての実数を動くときのf(x)の最小値が18で,f(c)=32のときb,cを で表せさらにf(-12)=25のときを求めよ. (上智大経) (1) 安直にェ=bで最 小としないように. (2) αを出すところも グラフを使いたい。 21

解決済み 回答数: 1