学年

質問の種類

数学 高校生

(1)(2)共になぜ微分するのか分かりません、 このような問題やったことがなくて、(微分の表し方でdX分のdYと置いたこともなかった)色々動画授業とかも見ましたが分かりませんでした、 助けてください、、

260 00000 基 本 例題 173 面積・体積の変化率 球の半径が変化するとき球の体積V,r=5における変化事を めよ。 (②2) 球形のゴム風船があり、半径が毎秒 0.5cm の割合で伸びるように数 を入れる。 半径①cmからふくらむとして、半径が5cmになったときの この風般の表面積の、時間に対する変化率(em²/s) を求めよ。 CHART OLUTION 解答 半径rの球の体積は1/3 , 表面積は4πr2. (1) V の r = 5 における変化率は,Vのr=5における微分係数である。 (2) 風船の半径と表面積を,時刻tの関数で表す。 半径が5cmのときの時刻 を求める。 [注意 どの変数で微分したのかを明示するときには, (1) 半径rの球の体積Vは dV dV dr' dt いる。 複数の変数を同時に扱う場合, V' という記号は避けた方がよい。 4 V== πr³ ちょっと単価が変わると、保証はどうかわる? V を rで微分すると dr) 3² (rª)' = 3·3r² = 4 xr² av 4 よって,r=5におけるVの変化率は 4・52=100 (2) 風船がふくらみ始めてからt秒後の風船の半径をrcm, 表面積を Scm² とすると r=0.5t ① S=4πr²=4m(0.5t)2 = rt2 ds(12)=2πt よって dt r=5 のとき, ① から 5=0.5t したがって t=10 ゆえに, t=10 におけるSの変化率は 2.10=20㎡(cm²/s) PRACTICE・・・・ 173 ③ (1) 底面の半径が 直さが OTN66103 10秒後 p.254 基本事項 秒後 0.5tcm の形の記号を用 gは定数 「時間に対する変化率」 は、表面積Sを時刻の 関数で表して、で微分 して求める。 基 面積 SO (1 解 (1)

回答募集中 回答数: 0
数学 高校生

(2)と(3)が解説を読んでもなぜ異なる2つの実数解を持つという条件が必要かわかりません。 教えてください🙏

基礎問 150 95 接線の本数 3/ 曲線C:y=x-x 上の点をT(t, ピ-t) とする. (1) 点Tにおける接線の方程式を求めよ. 点A(a, b) を通る接線が2本あるとき, a, bのみたす関係式 を求めよ.ただし、a>0, b=d-α とする。 (3) (2)のとき、2本の接線が直交するようなα, bの値を求めよ. 精講 (2) 3次関数のグラフに引ける接線の本数は、 接点の個数と一致し ます. だから, (1) の接線にA(α, b) を代入してできるtの3次方 程式が異なる2つの実数解をもつ条件を考えますが,このときの 考え方は 94 注 で学習済みです. (3) 未知数が2つあるので, 等式を2つ用意します。 1つは(2)で求めてあるので,あと1つですが,それが 「接線が直交する」 を式にしたものです。 接線の傾きは接点における微分係数 (83)ですから、 2つの接点における微分係数の積=-1 と考えて式を作ります. 解答 (1) f(x)=x-x とおくと, f'(x) =3㎡²-1 よって, Tにおける接線は, y-(t³-t)=(3t²-1)(x-t) ∴.y=(3t2-1)x-2t3 (2) (1) の接線は A (a, b) を通るので b=(3t²−1)a-2t3 ∴.2t3-3at2+a+b=0 •••••• ......(*) (*)が異なる2つの実数解をもつので, g(t)=2t-3at2+a+b とおくとき, y=g(t) のグラフが、極大値、極小値をもち, (極大値)×(極小値)=0 であればよい. 94 注 g'(t)=6f2-6at=6t(t-a) g'(t)=0 を解くと, t=0, t=α だから 185 y=x²-x| 2.05./000 A(a,b){ a≠0 (909(a)=0) b=d-a, a>0 だから、a+b=0 (3) (2) のとき(*) より, t2 (2t-3a) = 0 参考 ポイント 2本の接線の傾きはf'(0),(2) だから,直交する条件より 13a 150 (0) (22)=-1 (− 1)(²77a²-1)=-1 a²= 8 27 a>0 より α =- 2√6 9 a=0 演習問題 95 [(a+b)(b-a³+a)=0 . b=. 2√6 9 3次関数のグラフに引ける接線の本数は 接点の個数と一致する <a≠0 は極値をもつ ための条件 3次曲線Cの変曲点 (88) における接線をひと するとき, 476519 斜線部分と変曲点からは1本引ける 実は、3次関数のグラフに引ける接線の本数は以下のようになるこ とがわかっています. 記述式問題の検算用やマーク式問題で有効で す。 ・Cとl上の点(変曲点を除く)からは2本引ける 青アミ部分からは3本引ける 151 曲線 y=x-6.x に点A(2, p) から接線を引くとき、次の問いに 答えよ. (1) 曲線上の点T(t, ピー 6t) における接線の方程式を求めよ. (2) pt で表せ. (3) 点Aから接線が3本引けるようなかの値の範囲を求めよ. 第6章

未解決 回答数: 1