学年

質問の種類

数学 高校生

(2)の問題が分かりません。教えて下さい。

10 極値をもつ条件 関数A(x)=xについて,次の問いに答えよ. (1) A(x)の増減を調べ, 極値を求めよ. (2) 関数B() がB' (x) =A (z) を満たすとする. a を実数とし,x>0において, 関数 f(x)=B(z) -axが極値をもつとき,aのとりうる値の範囲を求めよ. 問題文のf(x)が極値をもつとき 100k (大阪工大・推薦/改題) f'(x) =0であることのみに注目してはいけない. f'(x) = 0 の解の前後でf'(x) が符号変化しなければ極値をもたない. 極値をもたない条件は,f'(x) が符号変化をおこさない (つねに0以上,またはつねに0以下)こと である. 文字定数を分離してとらえる場合 f'(x) の符号がg(x) -αの符号と同じになるとき,f'(x) の 符号は,曲線y=g(x) と直線y=αの上下関係で判断することができる.y=g(x) がy=aの上側にあ れば常にf'(x)>0, 下側にあれば常にf'(x) <0である。 このように,文字定数 αが分離できれば,定 曲線y=g(x) と, x軸に平行な直線y=αとの上下関係を調べればよいので,とらえやすい。 解答 > (1) A'(x)=2xe-x+xd(-e-x)=x(2-x) e-x A(x)の増減は, 右表のようになる. (x)) +(x)= (x)=Sit I 0 2 4 極大値は A (2)=- 極小値はA(0)=0 e² A'(x) - 0 + 0 = A(x) 7 > V H (2) f'(x)=B'(x)-a=A(z) -a x>0においてf(x) が極値をもつ条件は, である。 f'(x)がx>0で符号変化すること f'() (8-8)579- A(x)-a>o 0 + f(x)。 A(x)-9<0 =(x)7 Acx)>a A(x)<a 常にf'(x)>0⇔ y=A(x) がy=αの上側 常にf'(x) <0⇔y=A(x) がy=aの下側 ① である. (1) の過程, およびx>0のときA(x)>0 とから,y=A(x) のグラフは右図の太線のようにな る。 よって, ①により, 求める範囲は 4 e2 0(x)\il (1) 0<a<- のとき 直線と曲線は 0<x<2で交わり, f'(x)は負か ら正へと変化するので,ここで極 小値をとる. limA(x) =0(左 0<a<4 30 x110 2 x 下の注) であるからx>2でも必 ず交わり ここで極大値をとる. x2 x-00 et 注 lim -=0・・・・・・であるから, limA(x) =0が成り立つ. X11 ※を証明しておこう x = 2s とおくと, x2 ex e2s (es)2=4()² S 1+8% 6の前文を参照. () () は,x>0のとき, S so es であるから, lim -= 0 を示せばよい.e=t とおくと, S log t >1+x+- + -を導いて示 となり, 2 6 es t すこともできる. log x 818 IC 6(2) から lim -=0であるから lim=0である. S S-8 es

回答募集中 回答数: 0
物理 高校生

なぜ電圧が等しくなるのでしょうか?

電気容量 2.0F, C2=3.0μF の2つのコンデンサー, V=2.0×102V の電池, スイッチ Si, S2 を用いて,図の回 路をつくる。 S, を閉じて Cのコンデンサーを充電したの Sを切り、次に S2 を閉じて十分に時間が経過した。 C. C2のコンデンサーは,はじめ電荷をもっていなかった 200 203, 200 S₁ Sz/ C₁ C2 = とする。 C. C2 のコンデンサーにたくわえられた電荷はそれぞれ何Cか。 S, を切ってからSを閉じる前の Cの電荷をQとし, 求めるC,, C2 の電荷を Q.. Q2 とする。 電池を切りはなして S2 を閉じるので, 電気量保存の法則から、図の破線で囲まれた部分 この電荷は保存される。 すなわち, QQ,+Q2 で ある。 また, C, C の上側、下側の極板は, それ それ導線で接続されており、電荷の移動が完了す S2 C +Q C 5 ると,上側, 下側のそれぞれの極板の電位は等し くなる。 すなわち, 各極板間の電圧は等しい。 ■解説 S を閉じたとき, C1のコンデンサ ーにたくわえられる電荷をQ とすると, Q=CV=(2.0×10-) × (2.0×102) =4.0×10-4C S, を切り, S2 を閉じた後の C, C2 のコンデンサ 一の電荷を, それぞれ Q1 Q2 とする。電気量保 存の法則から, Q1+Qz=4.0×10-4 ... ① また,各コンデンサーの極板間の電圧は等しい。 なんで Q2 Q₁ S2 +Q₁ +Qzl == ..2 2.0×10-6 3.0×10-6 -Q₁ -Q2C 2 理すると, 式 ② から, Q2=3Q1/2となり, 式① に代入して整 Q=1.6×10-C, Q2 = 2.4×10-C 13. コンデンサー 145

回答募集中 回答数: 0