学年

質問の種類

数学 高校生

どうして、底を2にするんですか??

重要 例題 38 ant = pa," 型の漸化式 | a1=1, an+1=2√an で定められる数列{an} の一般項を求めよ。 00000 【類近畿大 指針 がついている形, an² や an+13 など 累乗の形を含む漸化式 an 解法の手順は an+1=pa ① 漸化式の両辺の対数をとる。 an の係数かに注目して、底がりの対数を考える。 10gpan+1=10gpp+logpang すなわち 10gpan+1=1+glogpan 2 10gpan=bn とおくと bn+1=1+gbn → -logeMN = logM+log.N loge M=kloge M bn+1=bn+▲の形の漸化式 (p.464 基本例題 34 のタイプ)に帰着。 対数をとるときは, (真数)>0 すなわち a">0であることを必ず確認しておく。 CHART 漸化式 αn+1=pan" 両辺の対数をとる α=1>0で,n+1=2√an (>0) であるから,すべての自 解答然数nに対してan>0である。 よって, an+1=2√an の両辺の2を底とする対数をとると 10gzAn+1=10g22√an log2an+1=1+110gzan 2 bn+1=1+1/26n ゆえに 初 10gzan=bn とおくと これを変形して bn+1-2=(bn-2) ここで b1-2=10g21-2=-2 > 0 に注意。 厳密には,数学的帰納 で証明できる。 log₂(2.an) =log22+ log. 特性方程式=1+10 基本 α=2, (1) n (2) ar 指針 解答 よって, 数列 {b,-2} は初項 -2,公比 1/2の等比数列で n-1 b-2=-20 =-2(12) - すなわち bn=2-22- を解くと α=2 12 したがって, 10gzan=2-22 から an=22-22- \n-1 =21- logaan-pan-d 早 検 PLU anan+1 を含む漸化式の解法 実討 anan+1 のような積の形で表された漸化式にも 例えば 両辺の対数をとるが有効である。 LON

未解決 回答数: 1
数学 高校生

題意からn番目のバスで到着した患者で最小の整理券を貰った患者の待ち時間を求める問題で解答では写真の様に4(n^2-n/2+1)〜となっていますが、()の+1は自分の診察時間も含めてしまうので要らないと思ったのですがどうでしょうか

[1] ある病院では午前9時からの診察に対して, 病院に午前8時に到着する送迎バ スから午前9時30分に到着するものまで、合わせて10便の送迎バスを10分間隔 で運行し,早く来た患者から順に1番、2番、3番の整理券を渡し,整理券の 番号の順に診察することとしている。診察は午前9時ちょうどに始め,1人につき 4分で終了し,終了すると直ちに次の患者の診察が始まるとする。 ある日, 来院し た患者はすべて送迎バスを利用し, k番目の送迎バスには人の患者が乗っていた (k=1,2, ..., 10)。 1.0 60.6010. 55.0 Fra 便名 到着時刻 患者数 整理券番号 180円 221.21.10 1 8:00 1人 1 exes. s. 68 2 8:10 2人 2,3 $235 ESAS, AQ ress. rass. 3.0 0825. 1.0 EETE, 1801 1803 180E 8:20 3人 4,5,6 es. 186. 18.0 BIE.IE. 2.0 ... : 0288. 10188.00 10 9:30 10人 21CD Tees 08 erep, 2081 erse. COSE. EDGE II S.I 0. SCOD SSSA (1) この日発行された整理券で最も番号の大きいものはアイ 番であり,この整 理券を受け取った患者は9時30分に到着してから診察が始まるまで ウエオ 分待つこととなる。 まで 186 BEA (数学II・数学B 第4問は次ページに続く。) 028 DEBA 1881 DEBA 8087 each se 1.4=216

未解決 回答数: 1