学年

質問の種類

現代文 高校生

現代文の質問です。なぜ、コメンテーターにとって人口減少が便利な言葉なのかという問いで、答えが、実際に因果関係のない人口減少で危機を煽っても、誰も傷つけない、だそうです。なぜ、文章中にある、一般の人を騙しやすい、が理由にならないのでしょうか。

8 8 【文章Ⅱ】 ちまた 2065年に約8800万人まで減少する一方で、高齢者の割合は4割近くに上昇すると推計 ① 日本の行く末を論じる上で、巷で騒がれているのが「少子高齢化で人口減少時代に突入する から何かと大変」という話題だ。国立社会保障・人口問題研究所によれば、日本の人口は、 人口増加こそが幸福をもたらすかのような風潮だ。 ② この推計に乗っかって、新聞、書籍、経済誌、ネット記事に至るまで、人口減少時代に起こ るであろう、ありとあらゆる危機の事象予測とそれに対する処方箋が考察されている。まるで、 かわいまさし うはいかない。 ⑤ というのも、その地域の人口が減れば当然、いずれは行政規模の適正化のため、市町村を合 併しなければならない。民間企業なら地方の支店を減らすくらいで済むが、地方公共団体はそ 地方公共団体の関係者だと筆者は見ている。人口が減り続けたら、最も困るのは彼らだからだ。 版されるなど、世間の耳目を引いている。 談社現代新書)だ。これが45万部を超える大ベストセラーとなり、類似したムック本が複数出 ③その火に油を注いだのが、2017年6月に発刊された河合雅司氏の著書『未来の年表』(講 4 とはいっても、実はこの「人口減少危機論=人口増加幸福論」を支持する“世間〟とは、主に ⑥ 日本では過去3回、自治体が大合併した歴史がある。(図1)日本には1888年(明治2 年)時点で、自然集落の町単位で7万以上もの自治体があったが、翌1889年の「明治の大 合併」によって、1万5859の市町 に再編された。 らに合併が進むかもしれない。 することを目標に掲げていたから、さ 府は、もともと自治体数を1000に 治体数は1718で止まっている。政 年(平成26年)の合併を最後に全国自 合併」「平成の大合併」を経て、2014 戦後も市町村合併は進み、「昭和の大 図1 自治体の合併の歴史 1,242 10,982 1,797 8,518 1,903 1,574 663 1,994 577 568 自治体数 年月 計 市 町 村 |1888年 (明治21年 ) 1889年(明治22年) | 71,314 71,314 15,859 39 15,820 1922年(大正11年) 12,315 91 1945年(昭和20年10月) 1947年(昭和22年 8 月) 10,505 1953年(昭和28年10月) 9,868 1956年(昭和31年4 年4月) 4,668 10,520 205 210 1,784 | 8,511 286 1,966 7,616 495 1,870 | 2,303 1956年(昭和31年9月) 3,975 498 1962年(昭和37年10月) 1961年(昭和36年6月) 3,472 556 1,935981 3,453 558 1,982 913 1965年(昭和40年4月) 3,392 560 2,005 827 1975年(昭和50年4月 3,257 643 1,974 640 2,001 601 1995年 (平成 7年 4月 3,234 1999年 (平成11年4月) 3,229 671 1,990 3,218 675 ,981 | 562 1985年 (昭和60年 4月 3 月月月月月 年年年 18 786 757 2002年 (平成14年4月) 2004年(平成16年5月) 3,100 695 _ 1,872 533 2005年(平成17年4月) 2,395 739 1,317 339 1,821 2006年(平成18年3月) 2010年 (平成22年4月) 1,727 2014年(平成26年4月) 1,718 777 846 198 198 790 745 183 (総務省 「市町村数の変遷と明治 昭和の大合併の特徴」 より ) 25・・ しないことが分かる。 このように過去を振り返ると、人口 あったからだ。したがって、人口減少で地方自治体が消滅するという相関関係は必ずしも成立 増加時代にあっても自治体の数は減っている。そこには行政の効率化という大きなメリットが 2017年には約274万人と50万人以上減った。 事実、ピークの1994年には約328万人もいた地方公務員の数は、その後減少を続け、 り 自治体が合併すれば、2つの役場が1つで済むわけだから、課長や係長といったポストも1 つずつ失うことになるだろう。あるいは将来的にリストラで職場そのものを失うかもしれない。 ここう そこで、地方役人らは何とかして糊口をしのごうと、「地域に人口を増やそう 尾 Alchy 30 L

回答募集中 回答数: 0
数学 高校生

N(p,n分のpq)とN(m,n分のσ二乗)って一緒なんですか?なんで違う式になってるかわからないです あとそもそも母比率と標本比率の関係がわかりません 教えてください

5 B 標本平均の分布と正規分布 ある工場で製造された製品について 不良品の割合を調べる場合のよ うに,母集団の各要素が,ある特性 A をもつかどうかを調査の対象と することがある。このとき,母集団全体の中で特性 A をもつ要素の割 合を,特性 A の 母比率という。これに対して,標本の中で特性 A を もつ要素の割合を,特性 A の標本比率という。 特性 A の母比率がpである十分大きな母集団から,大きさがnの標 本を無作為に抽出するとき 標本の中で特性 A をもつものの個数をT とすると,Tは二項分布B(n, p)に従う。 標本 則が成り立 標本平場 母平均 5 出する Nm 母集 分布 N 15 10 よって,g=1-p とすると, 86ページで学んだことから,nが大き いとき,Tは近似的に正規分布N(np, npg) に従う。 特性 A の標本比率を R とすると,R=- Tである。Rは標本平均 X 例題 10 n 9 と同様に確率変数で PAR E(R)=E(T)=1+np=p V(R)-112V(T)=1212.npa pq •npg= n ☆正規分布) したがって,標本比率 R は近似的に正規分布 Np, pq に従う。 n (6) 15 標本比率 R は,次のように考えると, 標本平均 X の特別な場合になる。 特性 A の母比率がである母集団において, 特性A をもつ要素を1, もたない要素を0 で表す変量 x を考えると,大きさんの標本の各要素 20 を表すxの値X1,X2, ......, Xn は, それぞれ1または 0 である。 特性 A の標本比率R は, これらのうち値が1であるものの割合であ るから h大きいとき X1+X2+......+Xn R= hXIII N (p, PHP), Ri n N(ゆ)に従う 20 4

回答募集中 回答数: 0
物理 高校生

剛体のつりあい プロセス問題(3)を教えていただきたいです。 そもそものところ負のモーメント、正のモーメントとということも理解していません。 どっちもおんなじ方向回ってるから左回りやん。ってなります。 解説お願いします🙇

プロセス 次の各問に答えよ。 図1のように,点Pに 2.0Nの力を加える。 点0のま 2.0N -22cm 2) F わりの力のモーメントの大きさを求めよ。 OQ は力の作 用線に引いた垂線で, OP は25cm, OQは22cm である。 2 図2のように, 点Pに 8.0Nの力を加える。 点0のま わりの力のモーメントの大きさはいくらか。 (0) Q 図 1 25cm P 8.0N 3 図3のように,点A,Bに平行で逆向きの5.0N の力 を加える。 点A, B, Cのまわりの力のモーメントの和 はそれぞれいくらか。 反時計まわりを正とする。 図2 130° P 10 -50cm 5.0N 1.0mB 図3 Brie A 2.0m C 5.0NY 逆き 逆比 きい 4 図4のように, 軽い一様な棒に重さ w, 4w 3wの物 体が固定してある。 全体の重心はどこか。 -20cm -20cm- 図 4 コモ 5 図5のように,重さ5.0N, 長さ1.0m の一様な棒の 一端をちょうつがいで固定し,他端に鉛直上向きの力を 加えて棒を水平に保つ。 何Nの力を加えればよいか。 解答 W 4w 3w -1.0m- 図5 10.44N・m 2 2.0N・m 3 すべて -15N・m 4 左端から25cmの位置 5 2.5N

回答募集中 回答数: 0
数学 高校生

(2)(3)の違いがよく分かりません。右ページの➗3! をする理由を読んでもまったく分かりません。誰か教えて欲しいです

372 基本 例題 25 組分けの問題 (2) ・組合せ 0000 9人を次のように分ける方法は何通りあるか。 (1)4人,3人, 2人の3組に分ける。 (2)3人ずつ, A, B, C の3組に分ける。 (3) 33組に分ける。 る 東京 (4)5人、2人, 2人の3組に分ける。基本21 指針 組分けの問題では,次の① ② を明確にしておく。 ①分けるものが区別できるかどうか ②分けてできる組が区別できるかどうか 「9人」は異なるから, 区別できる。 ...... 特に,(2) と (3) の違いに注意。 (1) 3組は人数の違いから区別できる。 例えば, 4人の組を A, 3人組をB, 2人の 組をCとすることと同じ。 (2)組に A,B,Cの名称があるから, 3組は区別できる。 (3)3組は人数が同じで区別できない。 (2) で, A, B, C の区別をなくす。 →3人ずつに分けた組分けのおのおのに対し,A,B,Cの区別をつけると,異な る3個の順列の数 3! 通りの組分け方ができるから,[(2) の数]÷3! が求める方 法の数。 (4) 2つの2人の組には区別がないことに注意。 なお,364 基本例題21との違いにも注意しよう。 (1)9人から4人を選び, 次に残った5人から3人を選ぶ 解答 と,残りの2人は自動的に定まるから, 分け方の総数は 9C4X5C3=126×10=1260 (通り) (2) Aに入れる3人を選ぶ方法は 3-(A-8) C3通り Bに入れる3人を, 残りの6人から選ぶ方法は 6C3通り Cには残りの3人を入れればよい。 したがって, 分け方の総数は 9C3 × 6C3=84×20=1680 (通り) 2人,3人,4人の順に選 (1) 八郎(S) んでも結果は同じになる。 4×53×2C2としても 同じこと。 (2),A,B,Cの区別をなくすと、 同じものが3!通 次ページのズーム UP 参 りずつできるから、分け方の総数は (9C3 × 6C3)÷3!=1680÷6=280 (通り) (4)A(5人),B(2人), C (2人) の組に分ける方法は 9C5×4C2 B,Cの区別をなくすと、 同じものが2! 通りずつでき るから,分け方の総数は (9C5×4C2)÷2!=756÷2=378 (通り) 照。 <次ペ 本

回答募集中 回答数: 0