学年

質問の種類

数学 高校生

整数の性質の問題です。解答にもあるように、基本背理法で解くようなのですが、よく分からないです。解説お願いします。 分からない部分 ・そもそも「2つの〜であるとき、」「a+b〜である と」のどちらをまたは、両方証明していくのか ・aとbが互いに素であることに矛... 続きを読む

00 はとも ど、ま いほど、 とき 例題234 互いに素な自然数の性質 2つの自然数aとbが互いに素であるとき, a+b と abも互いに素である ことを証明せよ。 思考プロセス 条件の言い換え 「~ない」 の証明は ⇒ a+ b と ab が共通な素因数をもたない 「難しいので, 背理法 a + b と ab が互いに素 Action》互いに素であることの証明は,背理法を用いよ 開a + b と ab が互いに素ではないと仮定すると, a+b, ab は素数の公約数を用いて a+b=pm... ①, ab = pn ... 2 とける。 ただし, m, nは整数である。 このとき ② より paまたは6の約数である。 (ア) pαの数であるとき a = pk(kは整数)とおくと, ① より b=(m-k)p m-kは整数であるから, pは6の約数でもある。 (イ)が6の約数であるとき (ア)と同様に (ア),(イ)より,かはaとbの公約数となり, aとbが互いに 素であることに矛盾する。 したがって, a +6 と αb は互いに素である。 (別解) a + b と ab の最大公約数をg とおくと a+b=mg... ①, ab = ng ... 2 と表される。ただし,m,nは互いに素な自然数である。 ①より b = mg-a ②に代入すると 互いに素ではない はαの約数となる。 a(mg-a)=ng よって 同様にして b2=(bm-ng ゆえに,g d','の公約数である。 ここで, a b は互いに素より とも互いに素である から g = 1 したがって, 最大公約数が1であるから, a + b と α は互 いに素である。 a² = (am-n)g ★★★ atbab互いにそである ことを証明したい 背理法(例題 52,53) を 用いる。 を素数の公約数とせず, 単に公約数とすると 例 えば = 6 のとき, αが 2の倍数でbが3の倍数 のように, かが α または 6の約数でない場合もあ る。 は素数であるから1で はない。 a + b と abの公約数をg とおいて,g=1 である ことを示す。 a,b は共通な素因数をも たないから とも共 通な素因数をもたない。 7 章 17 1 約数と倍数

回答募集中 回答数: 0
数学 高校生

この問題の解答が知りたいです。解説が有れば助かります。

1匹万円 速効を使って問題を解く アプローチ n=1 ある日,太郎さんと花子さんのクラスでは,数学の授業で次の命題を証明した。 A3m 命題「nを正の整数とする。が有理数ならば、nは正の整数である。」 ただし,有理数とは、整数んと0でない整数を用いて分数 1 この命題を用いて、次の命題を証明する宿題が出された。 ⑤ 5678 宿題 命題を2以上の整数とする。 実数の集合A={√n,√n+1,√n+2,√n+3}について, Aは少なくとも3個の無理数を要素にもつ。」を証明しなさい。 の形に表される数である。 PUZZ 太郎さんと花子さんは宿題について,次のような会話をした。 二人の会話を読んで、次の問いに答 えよ。 3つ 4A51617 花子: 先生は背理法を用いて証明するように言っていたね。 太郎 : 命題が成り立たないと仮定して矛盾を導くんだったね。 でも、わかりにくいな。 花子:まず、この命題が何を表しているのか具体的に見てみようよ。 n=2のとき集合Aは, A={√2,3,2√5}だね。 n=3のとき集合Aは,A1√3,2,√5,√6}だね。 太郎: どちらも、集合Aの要素の個数は4個で,確かに無理数が3個あるね。 他のnはどうかな。 √2&2 <15 (太郎さんと花子さんはn=10まで書き出してみた。) (i) 124 太郎 : 集合 A は有理数を要素にもたないこともあるんだね。 集合を図で表現して整理してみよう。 実数全体の集合を全体集合 U, 有理数全体の集合を Vとすると、集合Vと集合Aの包含 関係はどうなるかな。 と 子: 次のように図をかいてみたよ。 (i) から (i)までの 部分の要素の個数に注目する と、包含関係と要素の個数の組み合わせは5つの場合が考えられるね。 (iii) U

回答募集中 回答数: 0
数学 高校生

命題と証明で質問です。(青チャート P.100) 検討の部分で以下の記載があります。 --------------------------------------------------------- 命題p⇛qについて、背理法では「pであってqでない」(命題が成り立... 続きを読む

100 00000 基本例題 58 背理法による証明 √5 +√7 は無理数であることを証明せよ。 ただし, V7 は無理数であること 知られているものとする。 指針 無理数である(=有理数でない)ことを直接示すの は困難。 そこで、証明しようとする事柄が成り立た ないと仮定して,矛盾を導き、その事柄が成り立つ ことを証明する方法,すなわち 背理法で証明する。 CHART 背理法 実数 解答 √5 +√7が無理数でないと仮定する。 このとき,55+√7は有理数であるから, rを有理数として √√√5 +√7=r<$<¢ √5=r-√7 両辺を2乗して ゆえに 5=r²-2√7r+7 2√7r=r²+2 ²+2 √5=12+2 直接がだめなら間接で 背理法 「でない」 「少なくとも1つ」の証明に有効 ...... r=0 であるから ① 2r 2 + 2,2rは有理数であるから、①の右辺も有理数である (*)。 よって、①から√7は有理数となり.7 が無理数であること に矛盾する。 したがって、√5+√7 は無理数である。 p.96 基本事項 (有理数(無理数でない実数 〔無理数(有理数でない実数 <√5+√7 は実数であり、 無理数でないと仮定してい るから.有理数である。 2乗して、√5 を消す。 (*) 有理数の和・差・積・商 は有理数である。 検討 √5 が無理数であることを仮 定すれば、17 5の両 辺を2乗して、同様に証明で きる。 検討 背理法による証明と対偶による証明の違い 命題 qについて,背理法では「♪であってgでない」(命題が成り立たない)として矛盾を 導くが、結論の「q でない」に対する矛盾でも、仮定の「かである」に対する矛盾でもどちらで もよい。後者の場合,「9 」つまり対偶が真であることを示したことになる。 このように考えると,背理法による証明と対側による証明は似ているように感じられるが、本質 的には異なるものである。対偶による証明は「4 か」を示す、つまり、(証明を始める段階 で)導く結論が力とはっきりしている。これに対し、背理法の場合、「pであってgでない」と して矛盾が生じることを示す、つまり、(証明を始める段階では)どういった矛盾が生じるのか ははっきりしていない。 指 Wilde I

回答募集中 回答数: 0