学年

質問の種類

数学 高校生

(3)で、なぜk+3は5を含まないのですか?

基本 例題 46 不等式で表される集合 実数全体を全体集合とし,その部分集合 A, B, C を A={x|-3≦x≦5}, B={x||x|<4}, C={x|k-7≦x<k+3} (kは定数)とする。古代 (1)次の集合を求めよ。 .109 2015 (ア) B (イ) AUB (ウ) ANB (2) ACCとなるkの値の範囲を求めよ。 /p.80, p.81 基本事項 1, 3, 5 指針集合の要素が離散的な値 (とびとびの値) でなく連続的な値であるときも,その集合を 視覚化するとよい。 この問題のように, 全体集合が実数全体の場合, ベン図ではなく、 集合を数直線で表すと考えやすい。 解答 その際,端点を含むときは,含まないときは を用いて, とくの違いを明確にしておく (p.63 参照)。 例えば, P={x|0≦x<1} は右の図のように表す。 CHART 集合の問題 図を作る (1)(ア)|x|<4から -4<x<4 よって, B={x|-4<x<4} であるから 0 1 x ー <x<c (cは正の定数) の解は -4 4 x -c<x<c B={x|x≦-4, 4≦x} (B={x||x|≧4} でもよい) (イ) A,B を数直線上に表すと, 右の図のようになる。 - よって AUB={x|x≦-4,-3≦x} (ウ) 右の図から BB- -A- -4-3 45 x <x<-4, 4<xは誤り。 端点を含まない範囲の集 合の補集合は,端点を含 む範囲の集合である。 ← ○ 補集合は ● A∩B={x|4≦x≦5} (2) ACC が成り立つとき, A, Cを数直線上に表すと, 右の図のようになる。 ゆえに, 全にk-7-35k+3x ACCとなるための条件は,804 ② k-7-3 ①,k+3>5 が同時に成り立つことである。 ①から k≦4 ②から k>2 共通範囲を求めて 2<k≦4 A (2) ①には等号がつくが ②には等号がつかない ことに注意。 k-7=-3 のときは,-3はAの要 素でもCの要素でもあ 。 +3=5のときは、 要素であるが Cの要素ではない。

解決済み 回答数: 1
数学 高校生

赤マーカーの部分がなぜこうなるのかわかりません。※ (①〜④)の部分 教えて下さい🙇‍♂️

7 極限が存在するように定数を定める 2x2+ax+a+1 (ア) lim- =bと書けるとき, α = b= 」である. x-2 x²+x-6 (中部) (イ) αを実数とする. a= ] のとき, lim (4x'+x+ax)は有限な値 」をとる. →+∞ (関西大 社会安全, 理工系) 分数式の極限が存在するとき 分母0のとき, 分子 分母 は分子→0でなければ発散する。つまり。 分母 (分母→0で →有限のとき,分子=分子 分数式の極限が存在するとき, 分母→0なら分子→0となっていなければならない. 分子 -×分母→有限×0=0, と説明することもできる 分母 精密に調べる前に (イ)では,“分子の有理化”をするが,変形する前にαの符号を調べておこう。 lim√42+xなので, a≧0のときは与式は∞に発散してしまう。よって&<0でなければならな X100 このときはもは 00-00 不定形では? いことがまず分かる.また,x→∞を考えるときはとしてよい.x2=|x|=xなどとすることが できる. ■解答 SMART (ア) →2のとき, 分母=x²+x-6→4+2-6=0であるから, 分数式の極限値 bのとき,分子→0でなければならない. 覚えない よって, 2・22+α・2+α+1=0であるから, a=-3 2x2+ax+a+1 2x²-3x-2 このとき, (x-2) (2x+1) x2+x-6 x2+x-6 (x-2)(x+3) 2x+1 5 (2 =1 x+3 x-2 5 =1 ← <3a+9=0 する ←分母分子とも, x=2のとき0 なので,ともに2を因数にも (因数定理) r-2で約分され て不定形が解消する. (イ) lim√42+x=+∞であるからa < 0 である. →+∞ (42+x)-(ax)2 √2+x+ax=- √√4x²+x-a ax (4-a2)x²+x (4-a²)x+1 ( 参照. √√4x²+x+ax の分子を有理化 = == √√4x²+x-ax 4+ a ・① 分母が0以外の値に収束するよ IC うに、分母分子をxで割った。 ④ のとき,①の分母→2-α(0) となるから, ①が有限な値に収束する とき, 4-α2=0 1 a <0によりα=-2であり, lim ① = x178 √A 2+2 -a 4 4-α>0のとき ①→∞ 4-2<0 のとき ①→-8

解決済み 回答数: 1