学年

質問の種類

数学 高校生

sinだけ2個三角形を書くのとcos,tanは左に書いて残りの角度が答えになる理由を教えてください

三角 050≤180 (1) sino= CHART 解答 GUIDE たすを求めよ。 √3 2 (2) COS 0=- √2 11125 (3) tan 6-- /3 三角方程式 等式を表す図を、定義通りにかく 三角比の定義 sino=y 半径の半円をかく。 r cos 6= ② 半円周上に,次のような点Pをとる。 tang= (1) 7=2 (2) *=√2 (3) 7-2 (1) y 座標が√3 (2) 座標が-1(3) x座標が√3 ③ 線分 OP x軸の正の部分のなす角を求める。 半径2の半円上で,y座標が√3で ある点は,P(1,3)とQ(-1,√3) の2つある。 求めるは,図の∠AOP と ∠AOQ Q 2 2120° 三角定規の辺の比を利用し よう。 32 (1) Q And -2-10 /1 2x 60° 160° √3 22 6060° であるから,この大きさを求めて 0=60° 120° (2) 半径√2の半円上で, x座標が -1 101 である点は,P(-1, 1) である。 √2 y2 (2) P 求める0 は,図の ∠AOP であるから, この大きさを求めて 1 135° √2 1 A 三平方の 45 ・1 0 √2 x 45° 0=135° を三 (3) 座標が-3 y座標が1である (3) 200 点Pをとると, 求める 0 は,図の ∠AOP である。 -2. 2 2 150° この大きさを求めて 0810 A. 30 ° 0=150° √√30 2 % 0 Ania 30° x x=-√3. y=1 とする。 ご注意 (3) tan0=20180° では、常に y≧0 であるから, tan0=- 1 とし 3 Ans CV110の 100°と次の等式を満たすを求めよ。 ton A==√√3

回答募集中 回答数: 0
数学 高校生

2枚目にある∠CYAが120°になる理由が分かりません 教えてください (1枚目に条件があり、3枚目には表があります)

第3章 形 6発展 15分 以下の問題を解答するにあたっては, 太郎さんと花子さんは、ある広い市内の宝探しゲームに参加することにした。この宝 ゲームは駅をスタート地点とし、ヒントに指定された各ポイントをめぐり、宝が隠された イントを見つけ出すゲームである。 スタート地点の駅で最初のヒント1が配られた。 a ヒント1 図書館体育館。駅の3地点から等距離にある地点Xに (1)まず。二人は、市内地図を広げて地点Xの位置を考えることにした。 体育館 213km 66 「図書館 AZ \13km 56 (2) 地点 Xに着いた二人は、ヒント2を見つけた。 ヒント2 次の条件を満たす地点Yにヒント3がある。 ・地点Y と駅の距離は7km である。 ・地点X と地点Y の距離と 地点 X と駅の距離は等しい。 ・地点Y と図書館の距離よりも、地点Y と体育館の距離の方が長い。 +静電 ヒント2がある。 太郎: 等しい距離だから,円を考えればよいのかな。 花子:円だったら,どんな円を考えればよいのだろう。 地点Yは 上にあり、 ク Bo の交点のうち、図書館からの距離が 上にあることから. ケ 方の点が地点Yである。 キ と ク の二つ ク の解答群 (解答の順序は問わない。) キ 13km 駅 Omen 〇〇 図書館,体育館, 駅のある3点を頂点とする三角形の外接円 図書館,体育館, 地点Xのある3点を頂点とする三角形の外接円 ②駅のある地点を中心とし、駅から地点Xまでの距離を半径とする円 × ③ 図書館のある地点を中心とする半径 13 2 kmの円 ④ 地点 X を中心とする半径 7kmの円× ⑤駅を中心とする半径 7kmの円 3 図形と計量 CV 花子 : 図書館のある地点をA. 体育館のある地点をB, 駅のある地点をCとして考 えることにしよう。 ケ の解答群 太郎: 地点 XはA, B, Cの3点から等距離にあるから, ABCの外接円の中心 が地点Xだね。 ⑩ 短い ① 長い 花子 : A と B B と C,CとAの距離は等しく13kmだから、駅から地点Xまで の距離がわかるね。 ウ km先が地点Y である。 よって、駅のある地点をCとするとき, 地点 Xから ∠CXY= アイ V コ となる方向 エ 駅から地点Xまでの距離は アイ ウ I km先が地点 X である。 駅のある地点をCとするとき、駅から∠BCX=オカとなる方向の kmであるから、体育館のある地点をB アイウ コ については,最も近いものを、次の①~⑤のうちから一つ選べ。 I 30 34 ② 45 156 ④ 60 70

回答募集中 回答数: 0
物理 高校生

(5)で電荷の移動する方向を求める問題なのですが、コンデンサーBの方が容量が大きい為BからAに移動すると思ったのですがなぜAからBに移動するのか教えて頂きたいです。お願いします🙇‍♀️

練習問題 157. 問いに答えよ. 図1のように極板面積 S, 間隔 4d の平行板コンデンサーA,Bがある. 真空の誘電率を eo として以下の (コンデンサー・導体の挿入・合成容量) (1) コンデンサーAの容量 CA を eo, S, d を用いて表せ. (2)導体板がない状態で,電圧 V の電池でコンデンサーA,Bを別々に充電し、十分時間が経った後,電 池を取り除いた. コンデンサーA に蓄えられた電荷 QAはいくらか. (3) コンデンサー B に極板と同形で厚さ2dの導体板を図1の位置に挿入した.このとき, コンデンサー Bの容量 CB を表す式を記せ. (4) コンデンサーA内の電位分布は下の極板からの距離をæとすると図2のように表される.コンデン サーB内の電位分布を図2中に示せ. (5) A,Bのコンデンサーの同じ極性どうしを接続すると電荷はどちらからどちらに移動するか. (5)の状態のまま十分時間が経ったとき,コンデンサーの電圧はいくらか. d Vo 4d 導体板 2 d d コンデンサーA コンデンサーB 図1 ( E V = = 805 Q GOS Q:CK 80 S · 4= 4d (2) Q=Co (3) 4d 905 Vo 4a V: @x2d S Q:CV 805 CK CB = 2d" +++5 x 2d 4d 図2 (5) AB ④ 正電荷 日負荷 (6) 同じ極性つまり並列につなぐ V= CA QB CB Qn'+QB'=2QA QA = V CA QB VCB V(CA+CB):2QA v ( 205 +2805): 22k 4d+48d ※QAQである V (145) .263 Vo 49 V = Vo 品 へいれつ こしは同じ!!

回答募集中 回答数: 0
化学 高校生

(2)でC1とC2が並列接続とみなせるのはなぜですか?

462. コンデンサーの切り換え 解答 (1) 3.0×10-C, 4.5×10-J (2) 2.0×10C, 20V (3) 3.0×10-J 指針 C1, C2の上側, 下側の極板は,それぞれ導線で接続されており, スイッチSをBに切り換えた後、電荷の移動が完了すると,上側,下側 のそれぞれの極板の電位は等しくなる (図)。 すなわち, 各極板間の電圧 は等しく, このとき, C, C2 は並列に接続されているとみなせる。 解説 (1) QCVの公式から, C1 にたくわえられる電気量を Q1 と すると, Q1 = (10×10-) ×30=3.0×10-C U= = 1/2QVの公式から, C, にたくわえられる静電エネルギーを U」 と 10 U=1.1 x (3.0×10-) ×30=4.5×10-"J × すると, (2) スイッチSを切り換えたとき, C1, C2は並列接続とみなせる。C1 C=C+C2=10+5.0=15μFJ とC2の合成容量をCとすると, また,このとき, C にたくわえられていた電気量 Q1 が C と C2 に 分配されるので, C1, C2 の電気量の和は Q1 に等しい。 C1, C2の合成 コンデンサーに加わる電圧をVとすると, Q3.0×10-4 -=20 V C 15×10-6 求める C の電気量を Q1' とすると, Q1'=C,V=(10×10-) ×20=2.0×10-C V = == 05 ?整電ィネルギーをIT'Uっ とすると, S 等電位 B C₁ C2 等電位 Q² ⒸU = 1/2 CV²= 20 te 2C 電圧 用いてもよい。 別解 (2) 並列接続の 場合、電気量の比は, 電 気容量の比に等しい。 こ れを用いると, Q''=Qix- C1 C₁+C₂ 10 10+5.0 =(3.0×10-4x- = 2.0×10-4C 第V章 E 気

回答募集中 回答数: 0