学年

質問の種類

日本史 高校生

この答え持ってる方いたら教えてください!

STAGE A 用語チェック 旧石器文化 縄文文化 ① 氷河時代ともよばれる,約1万年前までの時代を地質学では何というか。 ② 1946年に相沢忠洋によって発見された, 群馬県の旧石器時代の遺跡名を答えよ。 ③ 旧石器時代の終わりごろ広まった, 木などに埋め込む組合せ式の石器を何と いうか。 ④ 北海道白滝や長野県和田峠などで産出される石器の原材料を答えよ。 もり ⑤ 動物の骨や角から作られた釣針や銛などを何というか。 ⑥地面を掘り、柱を立てて屋根をかけた縄文時代の住居を何というか。 ⑦ 縄文時代の女性をかたどった人形を何というか。 あらゆる自然物や自然現象に霊威を認める考え方を何というか。 ⑨ 死者の霊を恐れ, 手足を折り曲げて埋葬する方法を何というか。 農耕文化の成立と小国分立 ① 縄文晩期の水田跡が発見された福岡県の遺跡名を答えよ。 ② 石包丁による稲の収穫方法を何というか。 ③ 収穫物を保存するために作られた, 床の高い建物を何というか。 ほり ④ 戦いに備え, 周囲を濠や土塁で防御した集落を何というか。 ⑤ 九州北部で見られる, 大きな石をいくつかの石で支えている墓を何というか。 ⑥ 弥生時代の青銅製祭器のうち, 近畿地方を中心に分布するものは何か。 ⑦ 紀元57年に中国の皇帝から印綬を授けられたのは倭の何という国か。 ⑧ 江戸時代に⑦の印綬が発見された志賀島は、 今の何県にあるか。 ① ② ③ ⑤5 6 (7) ⑧ ① ② ③ ④ ⑤ ⑥ ⑦ ⑧8 ⑨ ⑨ 邪馬台国の卑弥呼が中国の皇帝からおくられた称号は何か。 3 古墳文化とヤマト政権 ① 古墳の形で最も重要とされ, 大規模古墳に採用されている墳形は何か。 ② 古墳の墳丘上に並べられた, さまざまな形の素焼きの土製品を何というか。 ③ 古墳時代前期・中期の石室の形状を何というか。 ④ 仁徳天皇陵とされる, 大阪府堺市にある最大規模の古墳名を答えよ。 ⑤ ヤマト政権が朝鮮半島南部に進出して求めた資源は何か。 ① 2 ③ ④ 5 ⑥ 391年にヤマト政権が交戦した朝鮮半島の国はどこか。 6 ⑦ 古墳時代後期に見られる一か所に集まった多数の小古墳群を何というか。 豊作を神に祈る春の祭りを何というか。正面 7 ⑧⑧ □ ⑩ 埼玉県・稲荷山古墳の鉄剣銘や熊本県・江田船山古墳の鉄刀銘に見られる 熱湯に手を入れさせただれたかどうかで真偽を判断する裁判を何というか。 9 10 「獲加多支鹵大王」にあたる天皇は誰か。 11 17世紀中ごろから近畿の大王の墓に採用された墳形を何というか。 12 血縁を中心に大王によって編成された豪族の同族集団を何というか。 13 豪族の政権内での地位や職務に応じて、大王が与えたものを何というか。 146世紀初めに新羅と組んでヤマト政権に反乱を起こした人物は誰か。 15 大王が日本各地に設けた直轄地を何というか。 ⑩6 有力豪族の私有地を何というか。 12 13 14 15 16 5

回答募集中 回答数: 0
生物 高校生

(1)と(2)がわかりません 解説お願いします🙇‍♀️

154. DNA の複製に関する次の実験について,以下の問いに答えよ。 適切な培地を入れたシャーレで, 24時間に1回分裂しているヒト由来の培養細胞がある。こ のシャーレに,蛍光を発するヌクレオチドを添加して実験を行った。 ※蛍光顕微鏡を用いて観察すると,このヌクレオチドが取りこまれた部分が,蛍光を発するのが 観察できる。 【実験】 蛍光を発するヌクレオチドを培地に加え, 1時間細胞に取りこませた後,蛍光顕微鏡 を用いて観察したところ, 蛍光を検出できる核をもつ細胞が見られた。 【実験 2】 蛍光を発するヌクレオチドを培地に加え, 3時間細胞に取りこませた。その後,培地 を洗い流し,蛍光を発するヌクレオチドを含まない 培地を新たに加えてさらに10時間培養を続けた。そ の結果, 蛍光顕微鏡を用いて観察すると, 蛍光を検 出できる分裂期中期の染色体が見られた。 (1) 右図は分裂している細胞における, 細胞当たりの DNA量の変化を示したものである。下線部の細胞が, 蛍光を発するヌクレオチドを取りこんだのは,グラ フの①~④のどの時期か ヒガイは199 [3] 1 細胞当たりのDNA量 (相対値) 3 ① ② 0 00 13 ④ 6 9 12 15 18 21 24 27 30 (時間) 経過時間 巻末問題 (2) 実験2の蛍光を検出できる染色体では,図Aで示す分裂期中期の染色体のどの部分が蛍光を 発しているか。 次の中から最も適当なものを1つ選べ。 A ① ② ③ ④ ⑤ 蛍光を発している部分 蛍光を発していない部分 [

回答募集中 回答数: 0
数学 高校生

数Ⅱ黄チャート 高次方程式 基本例題62を別解2の方法で解かなきゃいけないんですけど、解き方を忘れてしまったので、解説お願いします🙇

104 基本 例題 62 解から係数決定 (虚数解) 00000 3次方程式 x+ax²+bx+10=0 の1つの解がx=2+i であるとき, 実数 の定数α, bの値と他の解を求めよ。 (山梨学院大 p.98 基本事項2.基本61 解 CHART & SOLUTION x=αがf(x)=0の解⇔f(α) = 0 代入する解は1個(x=2+i) で, 求める値は2個 (αとb) であるが, 複素数の相等 A, B が実数のとき A+Bi=0 A = 0 かつ B=0 により,a,bに関する方程式は2つできるから, a,bの値を求めることができる。 また,実数を係数とするn次方程式が虚数解αをもつとき,共役な複素数も解であるこ とを用いて,次のように解いてもよい。 別解 2αとが解であるから, 方程式の左辺は (x-α)(x-2) すなわち x-(a+α)x+a で割り切れることを利用する。 別解 3 3つ目の解をkとして, 3次方程式の解と係数の関係を利用する。 x=2+iがこの方程式の解であるから ここで, (2+i=2°+3・2'i+3.2i+i=2+11i, (2+i)+α(2+i)+6(2+i) +10=0 (2+i)=22+2・2i+i=3+4i であるから 2+11i+α(3+4i)+6(2+i) +10=0 iについて整理すると 3a+26+12,4α+6+11 は実数であるから 3a+26+12+(4a+6+11)i = 0 3a+2b+12=0, 4a+b+11=0 これを解いて a=-2,b=-3 ゆえに、方程式は x-2x2-3x+10=0 f(x)=x-2x2-3x +10 とすると f(-2)=(-2)-2-(-2)2-3-(-2)+10=0 よって, f(x) は x+2 を因数にもつから f(x)=(x+2)(x²-4x+5) したがって, 方程式は (x+2)(x-4x+5)=0 x+2=0 または x2-4x+5=0 x2-4x+5=0 を解くと x=2±i よって, 他の解は x=-2, 2-i 別解 1 実数を係数とする3次方程式が虚数解 2+i をもつ から,共役な複素数 2-iもこの方程式の解である。 よって,x+ax²+bx +10 は{x-(2+i)}{x-(2-i)} すなわち x4x+5で割り切れる。 mfx-2=i と変形して 両辺を2乗すると x2-4x+5=0 これを利用して x+ax²+bx+10の次数を 下げる方法 (別解 1の3行 目以降と同じ) もある。 (p.93 基本例題 55 参照) この断り書きは重要。 A, B が実数のとき A+Bi=0 ⇔ A=0 かつ B=0 ← 組立除法 1-2-3 10-2 -2 8-10 1-4 50 の部分の断り書きは 重要。

回答募集中 回答数: 0
数学 高校生

2枚目画像のR(S=2)のところで、確率を求めている式の真ん中の3!/2!が何をしているのかがわかりません。教えてください。

第3問 場合の数 確率 【解説】 以下では, 東方向への移動を 南方向への移動を 西方向への移動を 北方向への移動を↑ とし,点Aから出発する経路と4種類の矢印の並べ方を対応さ せて考える.例えば,→→→ という並べ方に対しては次図の (a)の経路が対応し、という並べ方に対しては次図 の (b) の経路が対応する。 逆に,点Aから出発する経路を1つ定め ると,それに対応する矢印の並べ方が1つ得られる。 (コ) B B 「よりも左側に↓があるものの個数を考える。 まず、 、 、 の並べ方が, -=35 (通り) あり、その各々に対して4個の□への 1, 1, 1, ↓の配置の、 仕方が 4, 1, 1, ↑ *1, 1, 1. t 1. 1. L. 1 の3通りずつあるから, 北方向への移動を3回, 南方向への移動 を1回 東方向への移動を3回行うような移動の仕方の数は、 例えば、4個のと3の一の並べ 35通りのうちの1つとして。 ローローロー 35x3 105 (通り)。 四 南北の4枚のカードから無作為に1枚を引く 2 がある。 このとき、条件を満たすように 3の1と1個のを口へと配置す ることで. A (b) (1) 点Aを出発し, 5回の移動後に点Bにいる移動の仕方の数は 1. 1. →,,の並べ方の個数であるから, 5! = 10 (通り)。 2!3! 同じものを含む順列 (2) 点Aを出発し、7回の移動後に点Bにいる移動の仕方のうち、 点Cを通るものは、点Aから点Cに移動するまでに2回, 点 から点Bに移動するまでに5回の移動をすることになる。 点Aから点Cまでの移動の仕方の数は1の並べ方の個数 であるから. のもののうち、αが、 . が ...... あると これらのものを並べてでき 順列の総数は、 (通り) mimi (n=m₁+m+ +m₂) 2!=2 (通り)。 である。 この各々に対して,点Cから点Bまでの移動の仕方の数は 「. の並べ方の個数だけあるから, =5 (通り)。 よって, 点Aを出発し、7回の移動後に点Bにいる移動の仕方 のうち,点を通るものの数は, (通り). また北方向への移動を2回, 西方向への移動を1回 東方向 への移動を4回行うような移動の仕方の数は 1. 1.←→,→ →の並べ方の個数であるから, とき 引き力は4通りあり、これらはすべて同様に確からしい。 よって,, . 1.の移動が起こる確率はすべてである。 ただし、試行を行った点において、道がない方向のカードを引い た場合は移動ではなく Stay が起こる。 (3)点Aを出発し、5回の試行後に点Bにいるのは、 が2回, が3回起こる場合である。 (1)より,その確率は、 -1-1-11 [1] →1→1→ 11-1-1- の3通りの並べ方が得られる。 (4)( (4) 点Aを出発し、7回の試行後に点Bにいるような事のうち. Stay がちょうどk 回 k=0.2) だけ起こる事象をR(S=k) と す。 まず、R(S-2)のうち, D, を過るものについて考える. このとき、最初の2回の試行でDに到達する必要があるから、 が2回起こればよく、その確率は、 Stay がちょうど1回だけ起こると 残りの6回の試行では、7回の行に にいるように移動することができ ない。 また, Stay が3回以上起こると 残りの4回以下の試行ではBに することができない。 (+ さらに、残りの5回の試行で その事は、 が起これば試行でD, からBへ到するに (+)(4)-10(4) よって、 R (S2) かつ 「D, を通る」 確率は, 8. 105 (通り) ... 次に,R(S-2)のうち、D, を通らずにDを通るものについ て考える。 次に,f, f, f. 4.,,の並べ方のうち、3個目の このとき、最初の3回の試行でD, を通らずに D2 に到達する必 25- はが3回起こる必要があり、残りの2 回でStay. つまり「がない」が起 こればよい D, D, D, B

回答募集中 回答数: 0