学年

質問の種類

数学 高校生

数Ⅱ黄チャート 高次方程式 基本例題62を別解2の方法で解かなきゃいけないんですけど、解き方を忘れてしまったので、解説お願いします🙇

104 基本 例題 62 解から係数決定 (虚数解) 00000 3次方程式 x+ax²+bx+10=0 の1つの解がx=2+i であるとき, 実数 の定数α, bの値と他の解を求めよ。 (山梨学院大 p.98 基本事項2.基本61 解 CHART & SOLUTION x=αがf(x)=0の解⇔f(α) = 0 代入する解は1個(x=2+i) で, 求める値は2個 (αとb) であるが, 複素数の相等 A, B が実数のとき A+Bi=0 A = 0 かつ B=0 により,a,bに関する方程式は2つできるから, a,bの値を求めることができる。 また,実数を係数とするn次方程式が虚数解αをもつとき,共役な複素数も解であるこ とを用いて,次のように解いてもよい。 別解 2αとが解であるから, 方程式の左辺は (x-α)(x-2) すなわち x-(a+α)x+a で割り切れることを利用する。 別解 3 3つ目の解をkとして, 3次方程式の解と係数の関係を利用する。 x=2+iがこの方程式の解であるから ここで, (2+i=2°+3・2'i+3.2i+i=2+11i, (2+i)+α(2+i)+6(2+i) +10=0 (2+i)=22+2・2i+i=3+4i であるから 2+11i+α(3+4i)+6(2+i) +10=0 iについて整理すると 3a+26+12,4α+6+11 は実数であるから 3a+26+12+(4a+6+11)i = 0 3a+2b+12=0, 4a+b+11=0 これを解いて a=-2,b=-3 ゆえに、方程式は x-2x2-3x+10=0 f(x)=x-2x2-3x +10 とすると f(-2)=(-2)-2-(-2)2-3-(-2)+10=0 よって, f(x) は x+2 を因数にもつから f(x)=(x+2)(x²-4x+5) したがって, 方程式は (x+2)(x-4x+5)=0 x+2=0 または x2-4x+5=0 x2-4x+5=0 を解くと x=2±i よって, 他の解は x=-2, 2-i 別解 1 実数を係数とする3次方程式が虚数解 2+i をもつ から,共役な複素数 2-iもこの方程式の解である。 よって,x+ax²+bx +10 は{x-(2+i)}{x-(2-i)} すなわち x4x+5で割り切れる。 mfx-2=i と変形して 両辺を2乗すると x2-4x+5=0 これを利用して x+ax²+bx+10の次数を 下げる方法 (別解 1の3行 目以降と同じ) もある。 (p.93 基本例題 55 参照) この断り書きは重要。 A, B が実数のとき A+Bi=0 ⇔ A=0 かつ B=0 ← 組立除法 1-2-3 10-2 -2 8-10 1-4 50 の部分の断り書きは 重要。

回答募集中 回答数: 0
数学 高校生

この問題がわかりません 解説お願いします🙇‍♀️

重要 例題 218 4次関数が極大値をもたない条件 00000 関数f(x)=x4-8x3+18kx2 が極大値をもたないとき, 定数kの値の範囲を求め よ。 XAS 4次関数 f(x) x=pで極大値をもつ [福島大] 基本 211,214 x Þ f'(x) + 0 f(x) 極大 \ x=pの前後で3次関数f(x)の符号が正から負に変わる であるから、f'(x)の符号が「正から負に変わらない」条件を 考える。 3次関数f(x) のグラフとx軸の上下関係をイメー ジするとよい。 なお、解答の右横の図はy=x(x2-6x+9k) のグラフである。 f'(x)=4x-24x2+36kx=4x(x2-6x+9k) f(x) が極大値をもたないための条件は, f'(x) = 0 の実数 解の前後でf'(x) の符号が正から負に変わらないことであ ある。このことは, f'(x)のx3の係数は正であるから, 3次 方程式 f(x) = 0 が異なる3つの実数解をもたないことと 同じである。 k≥1 y k>1 k=1 347 3 x 解答 f'(x) = 0 とすると x=0 または x2-6x+9k=0 よって, 求める条件は,x2-6x+9k=0が k=0 y [1] 重解または虚数解をもつ [2] x=0 を解にもつ [1] x2-6x+9k=0 の判別式をDとすると D≤0 1-k≤0 35 12121=(-3)2-9k=9 (1-k) であるから 求め方は よって k≧1 [2] x2-6x+9k=0に x=0を代入すると k=0 したがって k=0, k≧1 おける関数の 6 x I 一般に, 4次関数 f(x) [4次の係数は正] に対し、f'(x)=0 参考 [4次関数の極値とグラフ] 3次方程式で,少なくとも1つの実数解をもつ。 その実数解をαとし、他の2つの解が実数 あればβ, y とする。このとき, y=f(x) のグラフは、次のように分類できる。 特に, 極大値を るのは①の場合だけである。 あり ける 小が入れ替わる)

未解決 回答数: 0
数学 高校生

(2)の問題で解がともに1より小さいときなぜa-1+b-1が0より小さくなるのか理解できません またなぜa-1 b-1と置くのでしょうか

x2-4 x x x2-4 B 2 x-2 x X x ÷ x (x+2)(x-2) x-2 x 北 x-2 x × x-2 =x+2 よって (2) HC (x-1) xx4(x+2)(x-2) x- X 別解 B 2 x-2 1. 1- xx X x =x+2 x-2 3 2次方程式2mx+2m²-5=0が,次のような異なる2つの解をもつとき,定数の値の範囲を求めよ。 【重要】 (1) ともに1より大きい (2) ともに1より小さい この2次方程式の2解をα, B, 判別式をDとする。 1/2=(m)-1-(2m²-5)=m+5=-(m+√5)(m-√5) また,解と係数の関係により α+β=2m, aβ=2m²-5 (1) 方程式が条件を満たすのは,次が成り立つときである。 D>0で, AAI 直線 よ ①ゆよ y (-1)+(β−1)>0 かつ(α-1XB-1)>0 D>0より -(m+√5)(m-√5)>0√5 <<√5 ... ① また (α-1)+(β-1)=(a+β)-2=2m-2 (α-1)β-1)=αβ-(a+β)+1=(2m²-5)-2m+1=2(m-m-2)=2(m+1Xm-2) *E**** (α-1XB-1)>0より2(m+1Xm-2)>0 (−1)+(β-1)>0より 2m-2>0 よってm>1 よって効く-1,2m ③ ① ② ③ より 2<<√5 (2) 方程式が条件を満たすのは,次が成り立つときである。 D>0で, (-1)+(β−1)<0 かつ (α-1Xβ-1)>0 D>0より -√5cm<√5 (−1)+(β−1)<0 より 2m-2<0 よって1 (a-1X8-1)>0) m<-1, 2<m (3) ① ② ③ の共通範囲を求めて -√5 <<-1 次の3次方程式を解け 4x+8=0 P(x) =42+8 とすると P(2) =23-4-23+8=0 *** 0 -√5 -1 1 2√√5 m -√5-1 D- 12.5m x よって、P(x) は x2 を因数にもち P(x)=(x-2)(x-2x-4)

回答募集中 回答数: 0
数学 高校生

(3)です。答えはどのように計算しているですか?分かりません。何故xに1を代入するのですか、また何故それで答えがすぐに求まるのかが分かりません。教えてください。

例題 65 3次方程式の解と係数の関係(1) **** 3次方程式 2x3x2+4x-5=0 の解をα, B, yとするとき、次の値 を求めよ. (1) 2+2+y (2)°+°+3 (3)2(1-α) (1-β) (1-y) 「考え方 3次方程式の解と係数の関係を利用する.a2+2+2++y"は対称式であるの で,これを基本対称式α+B+y, aβ+By+ya, aBy で表すことを考える。 解答 3次方程式の解と係数の関係より、 a+B+y=1/23aB+By+ya=1/2=2aBy=1/27 5 =- (1) a2+B'+y2=(a+β+y)-2(aβ+By+ya) (1)+(a+b+c)2 =(2-2-2- 7 4 =(a+β+y)(a2+B'+y-aB-By-ya)+3aBy =a+b2+c2 +2ab+2bc+2ca (2)°+°+y^ a+b+c-3abc 16 = (a+b+c) =(-14-2}+3. 5 3 15 15 15 -= 22 x(a²+b²+c² e-ab-be-ca) (別解) α, β, y は 2x-3x²+4x-5=0の解だから, a2+B'+y2の値は 20-30°+4a-5=0 より, 3 5 (1)の結果を利用する a²=a²-2a+ 2β-38°+4β-5=0 より B=228-23+2 5 2-3y'+4y-5=0 より ¥38 5 ==-2x+2 2 よって, a³+ß³+ y³±³½³² (α² +ß²+ y²)-2(a+B+ y) +3.2 5 3.(-)-2 3 15 15 + 20 2 8 (3) 2x-3x2+4x-5=2(x-a)(x-β)(x-y) + -00-0 (8) これに, x=1 を代入して 12.13-3.12+4.1-5=2(1- よって, a)(1-8) (1-7) - 2(1-α) (1-β) (1-y) =-2 α, B, yは与えられ た3次方程式の解』 り, 因数分解できる 展開して解と係数の 関係を用いてもよい Focus 5.記を! 3次方程式 ax+bx+cx+d=0(aキ0) の3つの解をα, B, y とすると. b α+β+y= a d as+By+ra=caBy=- X-f=q+m)-E==++ a

解決済み 回答数: 1