学年

質問の種類

理科 中学生

(6)の解説お願いしますm(_ _)m

生殖細胞の 遺伝子 代々丸い種子をつくるエンドウと、代々しわのある 種子をつくるエンドウをかけ合わせてできた子を自家 受粉させると、できた孫は、丸い種子としわのある種 子を合わせて合計5992個だった。 右の表は、このとき の生殖細胞の遺伝子とできた孫の遺伝子の組み合わせ中の を表したものである。 ただし、 種子の形について、 丸 A a い種子をつくる遺伝子をA、しわのある種子をつくる 遺伝子をa と表すことにする。 A AA Aa ■(1) 表の空欄内に、それぞれの遺伝子の組み合わせを 化したものと考え 書き入れよ。 a Aa aa □(2)できた孫のうち、遺伝子の組み合わせが子と同じ ものは何個か。もっとも適したものを、次のア~エから選び、記号で答えよ。 ア 749個 イ 1498個 ウ 2996個 エ 4493個 ] □(3) できた孫のうち、遺伝子の組み合わせが代々丸い種子をつくるエンドウと同じものは何個か。 もっとも適 したものを、次のア~エから選び、 記号で答えよ。 ア 749個 1498個 ウ 2996個 4493個 [Ou]ツ橋 #ワ □(4) できた孫のうち、しわのある種子をつくるものは何個か。 もっとも適したものを、次のア~エから選び、 記号で答えよ。 ア 749個 イ 1498個 ウ 2996個 エ4493個 [ □(5) しわのある種子をつくる孫とほかの孫をかけ合わせたところ、できたエンドウの種子はすべて丸い種子で あった。このときかけ合わせたほかの孫の遺伝子の組み合わせとして考えられるのは、何種類か。 [ 種類] □(6)できた孫からとれた種子をすべてまき、自家受粉を行った。 成長したエンドウからとれる種子のうち、し わのある種子の数は丸い種子の数の何倍か。 次のア~エから選び、 記号で答えよ。 ア 0.4倍 イ 0.6倍 ウ 0.8倍 1.0倍 緑[]

解決済み 回答数: 1
数学 高校生

例題13を用いて119番をやるのですが答えを見てもわかりません

第2章 集合と命題 113 n は自然数とする。 次の命題の裏を述べよ。 p.76 (1) 四角形 ABCDが長方形ならば, 四角形 ABCD は平行四辺形である、 (2) n2 が奇数⇒nが奇数 *114 n は整数, a, b は実数とする。 次の命題を証明せよ。 (1) n2+1が奇数ならば, nは偶数である。 (2)2a+360 ならばα > 0 または6>0である。 p.77 *115が無理数であることを用いて、次の数が無理数であることを証明せよ (1) 2-√√2 B問題 116 背理法を利用して,次のことを証明せよ。ただし,a>0 とする。 (1) αが無理数ならば, α は無理数である。 (2)が無理数ならば √3-√2 は無理数である。 *117 (1) n は整数とする。 次の命題を証明せよ。 ☑ n2が3の倍数ならば, nは3の倍数である。 p. 78 9 (2)背理法を利用して,3が無理数であることを証明せよ。教p.79 例題 無理数と有理数 a,bは有理数とする。 3 が無理数であることを用いて,次の命題 13 を証明せよ。 第2章 集合と命題 39 118 a, b は有理数とする。 6 が無理数であることを用いて,次の命題を証明 ☑ せよ。 √2+√36=0a=b=0 *119 次の等式を満たす有理数 g の値を 例題13の結果を用いて求めよ。 (1)(3+√3)-(2-√3) g+1-4v3=0 (2) √3-1+3=1 発展〉 「すべて」 と 「ある」 の否定 命題とその否定 命題とその否定について, 次のことが成り立つ。 pはxに関する条件とする。 命題「すべてのxについて」の否定は「あるxについて 命題「ある x につい否定 「すべてのxについて 問題 ある CONNECT 6 「すべて」 と 「ある」 の否定 次の命題の否定を述べ, もとの命題とその否定の真偽を調べよ。 (1) すべての素数nについて, n は奇数である。 (2) ある実数xについて x2≦0 a+b√3=0a=b=0 この命題は直接証明することが難しい。 よって、背理法を利用して証明する。 まず, b=0 と仮定する。 b よって 解答 6≠0 と仮定すると √3=- a b a は有理数であるから,この等式は、が無理数であることに矛盾する。 b=0 b=0のとき a030から a=0 したがって, 命題は真である。 【?】 a+bv3=0を 考え方 「すべて」 と 「ある」 を入れ替えて結論を否定する。 命題とその否定では,真 偽が逆になる。 解答 (1) 否定は 「ある素数nについて, n は偶数である。」 2は素数であり, かつ偶数であるから,否定は真である。 否定が真であるから,もとの命題は偽である。 (2)否定は 「すべての実数xについてx>0」 x=0のときx2=0 となるから, 否定は偽である。 否定が偽であるから,もとの命題は真である。 120 次の命題の否定を述べもとの命題とその否定の真偽を調べよ。

未解決 回答数: 1
数学 高校生

⑶にて x=-1では不連続にならないのですか? 確かにlim[x→-1+0]f(x)=f(-1)は成り立ってますけど、 その負側ではすぐに途切れているので不連続だと思いました。

基本(例題 56 関数の連続 不連続について調べる -1≦x2 とする。 次の関数の連続性について調べよ。 (1) f(x)=x|x| (2)g(x)=-1 (x-1)2 (3)h(x)= [x] ただし,[]はガウス記号。 (x+1), g(1)=0 P.97 基本事項 重要 57, 58、 指針 関数 f(x)がx=αで連続limf(x)=f(a)が成り立つ。 また, f(x) がx=αで不連続とは [1] 極限値 limf(x) が存在しない XIA [2] 極限値 limf(x) が存在するが limf(x)=f(a) XIA のいずれかが成り立つこと。 解答 x-a 関数のグラフをかくと考えやすい。 099 2章 関数の連続性 (1) x>0 のとき f(x)=x2 x<0 のとき f(x)=-x2(1),(2)多項式で表された よって limf(x)=limx2=0, x+0 x+0 limf(x) = lim(-x2)=0 x-0 x→0 0 また f(0)=0 ゆえに limf(x)=f(0) よって, x=0で連続であり -1≦x≦2で連続。 (2) limg(x)=lim =8 x→1 x-1 (x-1)² 極限値 limg(x) は存在しないから 関数は連続関数であるこ とと p.97 基本事項 1 ③ に注意。 関数の式が変わ る点 [(1) ではx=0, (2) ではx=1] における連 続性を調べる。 なお (3) では区間の端点での連続 性も調べる。 x→1 -1≦x<1,1<x≦2で連続; x=1で不連続。 (3) -1≦x< 0 のときん(x)=-1, 0≦x<1のとき h(x)=0, [x] は x を超えない最大 の整数。 1≦x<2のとき h(x)=1, h(2)=2 よって limh(x)=-1, limh(x) = 0 ゆえに, 極限値limh(x)は存在しない。 x-0 x+0 x→0 limh(x)=0, limh(x)=1 ゆえに, 極限値 limh(x) は存在しない x→1-0 x→1+0 limh(x)=1, h(2)=2 X-2-0 x→1 ゆえに lim h(x)+h(2) x2-0 よって -1≦x< 0, 0<x<1, 1 <x<2で連続 ; x = 0, 1, 2で不連続。 (1) f(x)* 4 (2) g(x) 14 0 2 x -1 0 1 1 2 X (3) h(x) 入らない 2 1 fm?= f(-1) 12 -1 スー1+0 0 1 2 -1

未解決 回答数: 1
物理 高校生

なんで(1)や(2)で有効数字が2桁になるんですか

基本問題 29 30 31 ○小球 ① 基本例題6 水平投射 物理 高さ19.6mのビルの屋上から, 小球を水平に速 さ 14.7m/s で投げ出した。 重力加速度の大きさ を9.8m/s2 として、次の各問に答えよ。 14.7m/s (1) 投げ出してから, 地面に達するまでの時間 を求めよ。 濃度を 解説動画 基本問題39 x 第 No. 力学Ⅰ Date ないので, 「v2=2gy] √2×9.82 =13.8m/s 14 m/s 落とした」 とは 初 床である。 の中にある数値を 37. 19.6= 2=4.0 ある。 t = ±2.0s t0 なので2.0s は解答 に適さない。 したがって 2.0s (2) 小球は,ビルの前方何mの地面に達するか。 (3) 地面に達する直前の小球の速さを求めよ。小の 指針 投げ出した位置を原点とし, 水平右 向きにx軸,鉛直下向きにy軸をとる。 小球の運 動は, x方向では等速直線運動, y方向では自由 落下と同じ運動をする。 解説 (1)地面のy座標は19.6mである から,「y=1/29t2」を用いて、高さはいくらか 1/2×9.8× 地面 (2) 地面に達するまでの2.0秒間, 小球は,水平 方向に速さ 14.7m/sの等速直線運動をする。 29 m x=vxt=14.7×2.0=29.4m/ (3) 鉛直方向の速度の成分 vy は, vy=gt=9.8×2.0=19.6m/s 小球の速さ [m/s] は,水平方向と鉛直方向の 速度を合成し,その大きさとして求められる。 =√ox2+vy^2=√14.72+19.62 (4.9×3)+(4.9×4)=4.9√32+42 [m=4.9×5=24.5m/s 25m/s ( 34, 35, 36,37 ① 基本例題7 斜方投射 物理 Sms.es & 基本問題 40 41 42 Em/s/ 水平な地面から,水平とのなす角が30℃の向きに、 速さ40m/sで小球を打ち上げた。 図のようにx軸, *9.8m/s2 として 40m/s JJ \m 30°(1) x 地面 例

未解決 回答数: 1