学年

質問の種類

数学 高校生

写真一枚目の(3)についての質問です。 (3)では放物線と円の間の面積を積分で求めています。 しかし、面積内に扇形が含まれていることから 扇形部分と積分部分の二つに分けて面積を求めています。 求める面積全体は写真二枚目で図示されているのですが、 どこからが扇形部分でどこから... 続きを読む

110 面積 (VI) 放物線y=ax-12a+2 (0<a</1/2) ・① を考える. 放物線 ①がαの値にかかわらず通る定点を求めよ 2 放物線①と円 x2+y2=16 く ...... ・・・ ② の交点のy座標を求めよ. (3) a= のとき, 放物線 ①と円 ② で囲まれる部分のうち, 放物 線の上側にある部分の面積Sを求めよ. (1) 定数αを含んだ方程式の表す曲線が, αの値にかかわらず通る 定点を求めるときは、式をαについて整理して, a についての恒 等式と考えます (37) (2) 2つの曲線の交点ですから連立方程式の解を求めますが, y を消去すると の4次方程式になるので, x座標が必要でも,まずxを消去してyの2次 方程式にして解きます. (3)面積を求めるとき,境界線に円弧が含まれていると, 扇形の面積を求める ことになるので,中心角を求めなければなりません. だから, 中心〇と交点 を結んだ線を引く必要があります。 もちろん,境界線に放物線が含まれるの 定積分も必要になります。 解答 LT (1) y=ax2-12a+2 より a(x²-12)-(y-2)=0 aについて整理 これが任意のαについて成りたつので [x2-12=0 y-2=0 :.x=±2√3,y=2 (2) よって, ① がαの値にかかわらず通る定点は (±2√3,2) y=ax²-12a+2 ...... ① |x2+y2=16 ②より,x2=16-y' だから ①に代入して 対称文と 他をまとめる

解決済み 回答数: 2