学年

質問の種類

物理 高校生

高校物理の万有引力の問題です。 (6)と(7)が分からないので教えてください

問2 万有引力の典型問題 頻出かつ大事な考え方が詰まっているのでしっかりとできるようにしよう。 地上の1点から鉛直上方へ質量mの小物体を打ち上げる。 地球は半径R、 質量Mの一様な球で、物体は地球 から万有引力の法則にしたがう力を受けるものとする。 図を参照して、以下の問いに答えよ。 ただし、 地 上での重力加速度の大きさを」とする。 また、 地球の自転および、 公転は無視するものとする。 (1)地上での重力加速度の大きさ」を万有引力定数G、および、R、Mを用いて表せ。 以下の問いでは、Gを用いずに答えよ。 (2) 物体の速度が地球の中心から2Rの距離にある点Aで0になるためには、初速度の大きさ”をどれだけに すればよいか。 物体の速度が点Aで0になった瞬間、 物体に大きさがでOAに垂直に方向の速度を与える。 (3) 物体が地球の中心を中心とする等速円運動をするためにはひをいくらにすればよいか。 実際には、点Aで物体に与える速さが (3) で求めた値からずれてしまい、 物体の軌道は、 地球を1つの焦点 とし、 ABを長軸とする楕円となった。 (4)点Bにおける物体の速さをを用いて表せ。 ただし、点Bでの地球の中心からの距離は6Rである。 (5) 物体がABを長軸とする楕円軌道を描くためには、 をどれだけにすればよいか。 (6)(3)の結果を用いて、 ケプラーの第3法則の比例定数kを求めよ。 (7)ABを長軸とする楕円運動の周期を求めよ。 m M A 2R 6R B

回答募集中 回答数: 0
数学 中学生

二次関数の変域の問題です。1.2.3について詳しく解説してくれると嬉しいです。

の変域 の変域 ン。 (2) とき) なるこ つうち, 負から正に変わっているので、yの変域は0以上または0以下となる。 また by 18よりyの変域は0以上で,a>0 とわかる。よって,b=0 一方、xの変域の両端の値のうち、絶対値の大きなx=3がy=18と対応するので,y=arにそれ ぞれ代入し, a=2と求まる。 答 a=2,b=0 中3で習う分野 問題 (解 mnを整数とする。関数y=axについて,xの変域がm≦x≦nのとき,yの変 0≦y2である。 m, nの値の組は全部で何通りありますか。 y=1/2xにおいて,yの値が2となるときのxの値は,y=2 を代入して, 2=1/2x2 よって、x=±2 (都立新宿高) 一方,比例定数は正で,yの変域が0以上ということを考えると,mは0以下で絶対値が2以下の 整数,nは0以上で絶対値が2以下の整数,さらにm,nのどちらか一方の値は必ず絶対値が2と なることがわかる。 EE, (m, n)=(-2, 0), (-2, 1), (-2, 2), (-1, 2), (0, 2) 5通り m n 入試問題にチャレンジ! 解答は, 別冊 p.47 2乗に比例する関数 Q問題 1 n を2以下の整数とする。 関数 y=xのxの変域がn≦x<3のとき,yの変域が 0≦y<9 となるnの値をすべて求めなさい。 ( 都立日比谷高) 9=9 12=0 m=0 1 問題2 関数 y=-- xについて、xの変域がa≦x≦a+5であるとき、yの変域が -4≦y0 となるようなαの値をすべて求めなさい。 ( 青山学院高 ) かる。 問題 3 α bを定数とする。 ただし, αは負の数とする。 3 関数 y=ax と1次関数y=2x+b において,xの変域が-1≦x≦3のとき,2つの関数の yの変域が一致した。 a, b の値をそれぞれ求めなさい。 (都立国分寺高) 101

回答募集中 回答数: 0
化学 高校生

(3)(4)がどうして回答のように計算していくのかよく分かりません

化学 問題Ⅱ 1 次の文章を読んで、設問(1)~(4)に答えよ。 --2 実験室では、 COCO る。 酸素は空気中に体積比で約21% 存在し、工業的には液体空気の分留で得られる。 塩素酸カリウムと酸化マンガン (NV)の混合物を加熱することで発生さ Okay +30= 水上置換で集める。このとき、酸化マンガン(Ⅳ)はあ としてはたらいてい 酸素 O は水にわずかに溶け、次のような溶解平衡が成り立つ。 O2(気)O2aq KHclc 0007 気相中のOのモル濃度をG [mol/L] 水に溶けているQ』のモル濃度をC[mol/L] とすると,平衡状態においては次式が成り立つ。 なお、 比例定数 Kは温度が一定なら、 一定の値をとる。 C D RT CEP RT 容積可変の密閉容器を用い, 温度を常に33℃に保って, 次の実験1.2を行った。 ただし、 気体は理想気体の状態方程式に従うものとし, 33℃における水の飽和蒸気圧 は 5.0 × 10° Pa とする。 また, どの平衡状態でも液体の水が存在し, その体積変化は 無視できるものとする。 【実験1】 0.100molのO2 をこの密閉容器に入れた。 容器内の圧力を1.00 × 10 Pa にしたところ, 容器内の気体の体積はV[L] になった。 この0の入った容 器に十分な量の水を入れ, 容器内の圧力を1.00 × 10 Pa に保った。 平衡状 態に達したとき, 容器内の気体の体積は0.80V [L]になった。 【実験2】 実験1に続けて, 容器内の圧力が2.00 × 10 Pa になるように圧縮すると. 新たな平衡状態に達した。 設問(1) 下線 ①の反応を化学反応式で記せ。 また, 空欄 適切な語句を記せ。 →あ にあてはまる最も よくいい K= G また,気相中の0』の分圧をP [Pa]. 気体定数を R [Pa・L/(K・mol)〕, 絶対温度を T〔K〕とすると,C は次のように表される。P=GR・T 設問(2) 空欄 い に入る適切な式を K, P, R, Tを用いて記せ。 また, 下線 ② で示される法則の名称を記せ。 設問 (3) 実験1で, 水に溶けている酸素の物質量は何molか。 有効数字2桁で記せ。 G= 6:上 RT C= RT 設問(4) 実験2で 水に溶けている酸素の物質量は何molか。 有効数字2桁で記せ。 また、このときの気体の体積をV'[L] とすると, の値を有効数字2桁で V' V これは温度一定のもとで,一定量の水に溶ける気体の物質量と, 気相中のその気 ヘンリーの法則 体の分圧の関係を示している。 記せ。

回答募集中 回答数: 0
物理 高校生

どうして対象のOを取ろうとしたのか教えて欲しいです

迷 から、uk√(kは比例定数) とおける。 水深 9.0mの領域 における波の速さを [m/s] 浅瀬における波の速さを [m/s] 水深 9.0mの領域の水深をん(=9.0[m]), 浅瀬 01 より、 の水深を〔m〕 とすると, 屈折の法則 n12=- V2 h₁ 19.0 9.0 = V2 V h2 V h₂ ゆえに h= =3.0[m] 3 60° (4) 右図のように, hhhs の水深が海岸に近づくほど小さ くなる海底が続いているとすると,射線は矢印のように回り 込んでくる。 海岸に近いところでは水深が0mに近づくので, において 波の速さも0m/s に近づく。 屈折の法則 sin V2 20m/sと考えると, sinr→0, すなわち, 0°となる。 したがって, 屈折角は 0° に近づく。 これは, 波面が海岸線 と平行になることを意味する。 146 4個 (4) 深さ h3 ha h5 海岸 146) センサー34 指針 反射波を別の波源から出た波として、干渉条件を考える。 ● センサー35 センサー 36 [解説] 壁に関して Oと対称な点を O' とすると, 反射波は O' から 出たように見える。 壁での反射 で波の位相が変わらないので, 0.0' は同位相の波源と考えれ ばよい。 ここで, 波の干渉の平面図は, 81 10A 波源を結ぶ線分上にで きる定在波を拡張して 考える。 O'B=√(6入)+(8)=101 1.8 A より |O′B-OB|=|10入-8入|=2入 31- -37 m=2 m=0 面に達し との交点 2入=1×2m (m=2) 2 HB 発する素 える。 -38 と書けるので,Bは, 壁 から左向きに数えて2番 目の, 0から出た波とそ の反射波が強め合う線 線が通る。 また, 波源 0 0′ を結ぶ線分上 にできる定在波の節や腹の 位置をもとに,節線や腹線 の様子を描いて解く。その とき,m=01 2 … の どの条件にあてはまる節線, 腹線であるかを示しておく こと。 3 5 ---- 81 別解 線分OB上の点を Pとすると -31- 11 10'0-0|=6入 であり , -x2m (m = 6) 1/2× と書けるので,Oは6番 61=- 。 目の強め合う線が通る。 0 m=6543210 A したがって, OB間には5本の腹線が通る。 2本の腹線の間に節線が1本ずつあるので, 線分 OB上に波が 互いに弱め合う点は4個ある。 2≤ | OP-OP|≦6入 である。 波が弱め合う条件 から, 21≤(2m+1) ≤61 を満たす整数の個数を 求めてもよい。 波の反射では,反射面 について波源の対称点を考 えるとよい。 油の +9

回答募集中 回答数: 0
物理 高校生

(3)の問(b)で計算してもl=√5^2-0.05^2になってしまって答えが合わないです...。どこの計算が間違っているのか教えて頂きたいです。

【2】 図のように,zy 平面内のx軸上において原点をはさんで0.10m の間 隔をおいた2点 Q1 Q2にそれぞれ q〔C] の正電荷が固定されている。 空 間は真空で, クーロンの法則の比例定数を [N·m²/C^) として,つぎの問い に答えよ。 (1) 原点における電位 V[V] を求めよ。 ⑥ KG-k】 E = Ka KF 2 (2)[C]の正電荷を原点から十分遠い (無限遠としてよい) 2軸上のA 点から0点まで移動させるとき、 外力がする仕事 W[J] はいくらか。 (3) A点におかれた質量 m〔kg),正電荷 Q[C]の第三の粒子に、0点に向け初 速度を与えたとする。 =2K+ (b)もし粒子の初速度が(a)で求めた値の半分であったとすると,粒子は (a) 粒子が0点に到達するための最小の初速度を求めよ。 2k B -0.05m0.05m Q: I Q2 Vo-2 q 点にどこまで接近することができるか。 0点から近接点 B までの距離[m]を求めよ。 (c) (b)でB点に達した粒子のその後の運動を, 句読点を含めて30字以内で説明せよ。 (4)質量 m(kg), 正電荷 g[C]の粒子を原点0からQ2の方向にx[m] 離れた点Cにおく。 (a)点Cの粒子に働く力F[N] はにほぼ比例することを示せ。 ただし, xは0.05m にくらべて十分小さ いとする。 また, Fの向きも示せ。 (b)この粒子が点Cを離れて動きはじめた。 どのような運動をするか。 句読点を含めて30字以内で答えよ。

回答募集中 回答数: 0