学年

質問の種類

数学 高校生

数A 確率 (ウ)の4C2/9C2のところなのですが、反復試行で計算するときと写真のようにCを使って計算するときの違いを教えていただきたいです🙇🏻

頻出 ★★☆☆ bがこの順に もとに戻さ が変わる (試行が ●くじ 238 乗法定理[2] 頻出 ★★☆☆ 袋には白球5個, 黒球4個, 袋Bには白球5個, 黒球3個が入ってい 個の球を同時に取り出すとき 2個とも白球である確率を求めよ。 る。 袋Aから2個の球を同時に取り出して袋Bに入れた後, 袋Bから2 場合に分ける 条件より, 袋Aからどの色の球を取り出すかによって,袋Bに 入っている白球の個数が変わる (試行が独立でない)。 [2個取り出し 袋Bに入れる 2個取り出す 5個 黒 4個 袋 A 袋B Action 独立でない試行は,段階に分けて各試行の確率を考えよ 例題 237 袋A 袋B (ア) 白球2個取り出し, 白球2個取り出す ■くじ 袋Bから白球) (イ) 2個取り出す 白球1個) 黒球1個 取り出し, 白球2個取り出す 「いたくじが当たり であるとき, 残るく 本で,その中には くじが2本含まれ から 3-1 10-1 2-9 (ウ)黒球2個取り出し, 白球2個取り出す 袋Aから取り出す 2個の球の色により, 次の場合に分けて 考える。 (ア) 袋Aから白球を2個取り出すとき 6 章 この確率は5CC 9C2 17 袋Bには白球7個と黒球3個が入っているから × 9C2 5C2 7C2 10 C2 7 54 5C1X4C1 (イ)袋Aから白球と黒球を1個ずつ取り出すとき 袋Bには白球6個と黒球4個が入っているから この確率は 9C2 いろいろな確率 10 C2 ■ は, a がはずれく 「いたとき, bが当 じを引く確率 (当 じは3本) である 3 1 10-1 3 ...,n) に りくじを引く 例題 18 参照) がこの順に1本 引いたくじはも 問題237 5C1X4C16C2 5 27 9C2 × (ウ)袋Aから黒球を2個取り出すとき 袋Bには白球5個と黒球5個が入っているから 4C2 5C2 × 9C2 1 10 C2 27 (ア)~(ウ)は互いに排反であるから、求める確率は 7 5 1 19 54 + + 27 27 54 (d) 188 4C2 この確率は 10人のうち 確率の加法定理 238袋 A には白球6個 黒球4個, 袋Bには白球5個, 黒球3個が入っている。 袋 時に取り出して袋Aに入れる。 このとき, 袋Aの中の白球と黒球の個数が最 Aから2個の球を同時に取り出して袋Bに入れた後, 袋Bから2個の球を同 初と変わらない確率を求めよ。 p.447 問題238 431

回答募集中 回答数: 0
数学 高校生

この問題の(2)の解説の下線部がなぜこうなるのか全くわかりません。教えてくださいm(_ _)m

[頻出 ★★☆☆ \3 例題 1164 三角関数の最大・最小 〔4〕・・・ 合成の利用 のときの0の値を求めよ。 D 頻出 (1) 関数 y=sin03 cos) の最大値と最小値, およびそ (2)関数y= 4sin0+3cose (0≧≦T)の最大値と最小値を求めよ。 ESHRON 思考プロセス 加法定理 Sπ ReAction asin0+bcos0 は, rsin (0+α) の形に合成せよ 例題163 サインとコサインを含む式 0≤ 0 B M (1)y=sin0-√3 cost 合成 ↓ y=2sin0- 3 サインのみの式 S π 3 sin (0) 2 sin (0) S 図で考える 0 (2) 合成すると, αを具体的に求められない。 0 B1x →αのままにして, sinα, cosa の値から,αのおよその目安をつけておく。 π (1)ysind-√3 cost=2sin (0- 3 OMO より よって 2 したがって 3 ≤0- π 3 VII √3sin(0)≤1 23 -√3 ≤ 2sin(0-4) ≤ 2 O 3 20 -√3 4 -10 11 x √3 3 π π 0- 3 2 8-4 - 1 すなわち 5 すなわち 0 = _2 6 πのとき最大値2 -1 π π 0- 3 3 すなわち 0 0 のとき 最小値√3 3 2 y = 4sin0+3cos0 = 5sin (0+α) とおく。 5 4 ただし, α は cosa= sina 5 π 0 ≤0≤ より 2 π +α sin(1⁄2 + a) ~ ① より 0<a< であり, sinα <sin a≦ata≦ 10= 35 2 ... ・・① を満たす角。 0 4 y 1 1 <3> ---- π 4 3 から ≦sin (0+α) ≦1 5 最 3≤ 5sin(0+a) ≤ 5 kh, y t 最大値 5, 最小値 3 sina ≦ sin (+α) ≦1 +αである -1 0 mai 41x 5 162 曜 164(1) 関数 y=sin-cos (0≧≦)の最大値と最小値,およびそのときの 9 の値を求めよ。 (2)関数y=5sin0 +12cos (0≧≦)の最大値と最小値を求めよ。 (S) 293 p.311 問題164 π 3 である ARC

回答募集中 回答数: 0
数学 高校生

赤丸の部分がどういう意味なのか教えていただきたいです🙇🙇 よろしくお願いします!

例題 342 標本平均の平均・ 標準偏差 ★☆☆☆ (1) ある高校の男子の体重の平均は 62kg,標準偏差は9kgである。この 高校の男子100人を無作為に選ぶとき,この100人の体重の平均 X の平 均と標準偏差を求めよ。 (2) ある母集団から復元抽出された大きさ3の標本の変量が X1,X2, X3 であるとき、標本平均 X の平均と標準偏差 X1 を求めよ。 ただし, X」 の確率分布は,右の表 P -1 0 1 211 |1|2 14 16 002 E(X) の通りとする。 N 公式の利用 母集団 母平均80 母標準偏差 無作為 抽出 標本 Of ... 標本平均 X 「標本平均の平均E(X) [標本平均の標準偏差。(X) X1+X2+…+ Xn 思考プロセス |個 n Action» 標本平均の平均は、 母平均と同じであることを用いよ 解 (1) 母平均m=62, 母標準偏差 o = 9, 標本の大きさ = m 0 = n=100 より 平 9 募集(X) =m=62, o(X) = = (2) 母平均の片側と! (2) 母平均m,母標準偏差は √100 m =(X)=(-1)/1/+0.1/12+ +1. +2・ 2 910 1 12 = (0.1) E(X^2)=(-1)/1/+0°.1/+12/1/2+241/12=1 6 o=o(X)=√√E(X2)-{E(X)} == よって E(X)=m= 2 o(X) 0 √3 = 13 2 2 練習 342 (1) ある高校の女子の 2 = 1 12 /3 2 標本の大きさ、母標準 偏差のとき、標本平均 X の標準偏差は (x)=1/1 標本の変量を X1,X2,・・・, Xn とすると E(X1) = E(X2)=・・・ =E(Xn) =m | (X)=6(X2)= = o(Xn)=0 V(X)=E(X2)-{E(X) 標本の大きさ n=3

回答募集中 回答数: 0
数学 高校生

数IIの三角関数の合成の利用の問題です。 (2)なのですが、解説を見ても理解ができなかったため、解説をお願いします。

(1) sin-cos0 = 1 002 のとき,次の方程式、不等式を解け。 例題 163 三角関数の方程式・不等式 〔6〕・・・ 合成の利用 **44 (2) 2sin(+) 6 +2cos√3 思考プロセス Action>> a sin0+ bcos, r sin(0+α) 既知の問題に帰着 サインとコサインを含む式 (1) sin-cos 0=1=> 合成 サインのみの式 sin (0- = 1 (2) まず 0 のみの式にしてみる。 を含む式… 6 (1) sine-cos =√√2 sin(0) であるから,与式は y 例題 O 162 sin(0) = 1 √2 例題 148 Π 6- =α とおくと,0≦02 より AUGLS7 ≤a< π 4 4 4 URSS π 3 この範囲で sinα = を解くと a = 2 TO π 3 6- π より 4 4 例題 162 (2) 2 = Π 4 " 2sin(+)+2cos= = √3 sin+3cos cose +2 cos COSO) + 2070200 0 = πT " 5809 π 44 π 2 3 sino + 2 2 12 よって, 与式は = = 2/3 sin (0+) JT 2√3 sin (0+)2√3 b5 sin (0+1) ≥ 1/1 2007 例題 148 0+ 8 + 1 = Π π =α とおくと,0≦02 より 3 3 1/12 Ra この範囲でsina 1/2 を解くと M 5 π, 3 6 1 sa≤or, 1x ≤a< 3 13 6 元 T Π T 5 13 TC 7 π, 3 < 6 6 TC 3 31 したがって TC 0≤0≤ 11 29 1630≦2のとき、次の方程式、不等式を解け。 (1) 3 sine-cos = -1 π P 023080 Action a Wy=sind y=2sin サイン& → 050 川 y=s X Π 4 よっ L 三角関数の合成 УА P 3 12 C 2.3 π У 3 ¦ √3 x F 13 1x

回答募集中 回答数: 0
生物 高校生

生物の食物連鎖とかの問題だと思うんですけど誰かわかる方いますか??? 英語すみません💦

hhmi Biolnteractive Some Animals Are More Equal than Others: Trophic Cascades and Keystone Species Mean Leaf Area per Plant Over 18 Months without beetle with beetle Leaf Area per Plant (cm²) Control Ecology 2400 2200 2000 1800 1600 1400 1200 1000 800 Experimental 0 T 2 www.BioInteractive.org 8 10 12 14 16 Months After Start of Experiment 4 6 Refer to the figure to answer questions 12 through 17. 12. For both the plots with the beetles added and the control plots, state the mean tree leaf area per plot that the scientists recorded after running the experiment for 18 months. The mean tree leaf area per plot that the Scientist recorded after running the experiment for 18 months wit the beetles added is 1.7m², S 2.2m² 13. Compare the trends in mean tree leaf area per plot for both the plots with the beetles added and the control plots over the 18 months of the experiment. The area of the control plat for thinoceros beetles has d has increased at a nearly constant rate, the other is a gradua decrease at first, then a sudden decrease, and finally a dradua 18 Figure 2. Mean leaf area per tree. Initial measurements were taken before (0 to 2 months) and after (7 to 18 months) beetles were added to 40 of 80 plants. The light gray round markers represent measurements taken of the control plots, to which beetles were not added. The black square markers represent measurements taken of the experimental plots, to which beetles were added. Measurements were made on all leaves to calculate the mean leaf area per plant. Error bars represent standard error of the mean. 14. Draw two diagrams that show the food chains for both the experimental and control plots. Include increase. interactions among predatory beetles (if present), ants, caterpillars, and piper plants. Revised January 2018 Page 4 of 5

回答募集中 回答数: 0